About homogenization of elasticity problems on combined structures
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 114-144
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study elasticity problems in the plane (space) reinforced with periodic thin network (box structure). This highly contrasting medium depends on two small related parameters $\varepsilon$ and $h$ connected with each other which controlling size of periodicity cell and thickness of reinforcement. For combined structures we prove classical homogenization principle the same for any interrelation between parameters $\varepsilon$ and $h$ that is quite contrary to the case of thin structures. We use method of 2-scale convergence with respect to variable measure natural to combined structures.
@article{ZNSL_2004_310_a6,
     author = {S. E. Pastukhova},
     title = {About homogenization of elasticity problems on combined structures},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {114--144},
     year = {2004},
     volume = {310},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - About homogenization of elasticity problems on combined structures
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 114
EP  - 144
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/
LA  - ru
ID  - ZNSL_2004_310_a6
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T About homogenization of elasticity problems on combined structures
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 114-144
%V 310
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/
%G ru
%F ZNSL_2004_310_a6
S. E. Pastukhova. About homogenization of elasticity problems on combined structures. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 114-144. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/

[1] V. V. Zhikov, S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh setkakh kriticheskoi tolschiny”, Doklady RAN, 385:5 (2002), 590–595 | MR | Zbl

[2] V. V. Zhikov, S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh setkakh kriticheskoi tolschiny”, Matem. sb., 194:5 (2003), 61–95 | MR

[3] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh yaschichnykh strukturakh kriticheskoi tolschiny”, Doklady RAN, 387:4 (2002), 447–451 | MR | Zbl

[4] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh sterzhnevykh karkasakh kriticheskoi tolschiny”, Doklady RAN, 394:1 (2004), 26–31 | MR | Zbl

[5] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh yaschichnykh i sterzhnevykh karkasakh kriticheskoi tolschiny”, Sovremennaya matematika i ee prilozheniya, 12 (2004), 51–98 | MR | Zbl

[6] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl

[7] V. V. Zhikov, “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izvestiya RAN. Seriya matem., 66:2 (2002), 81–148 | MR | Zbl

[8] V. V. Zhikov, “O dvukhmasshtabnoi skhodimosti”, Trudy seminara imeni I. G. Petrovskogo, 23, 2003, 149–187 | MR | Zbl

[9] G. Nguetseng, “A general convergence result for a functional related to the theory of gomogenization”, SIAM J. Math. Anal., 20:5 (1989), 608–623 | DOI | MR | Zbl

[10] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:5 (1992), 1482–1518 | DOI | MR | Zbl

[11] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti dlya periodicheskoi sostavnoi struktury”, Doklady RAN, 395:3 (2004), 316–321 | MR | Zbl

[12] S. E. Pastukhova, “Ob approksimativnykh svoistvakh sobolevskikh prostranstv teorii uprugosti na tonkikh sterzhnevykh strukturakh”, Sovremennaya matematika i ee prilozheniya, 12 (2004), 99–106 | MR | Zbl

[13] V. V. Zhikov, “K tekhnike usredneniya variatsionnykh zadach”, Funkts. analiz i ego prilozheniya, 33:1 (1999), 14–29 | MR | Zbl

[14] V. V. Zhikov, “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl

[15] V. V. Zhikov, “Note on Sobolev space”, Contemporary Mathematics and Its Applications, 10, 2003, 54–58

[16] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[17] S. E. Pastukhova, “O skhodimosti giperbolicheskikh polugrupp v peremennom gilbertovom prostranstve”, Trudy seminara imeni I. G. Petrovskogo, 24, 2004, 216–241