Voir la notice du chapitre de livre
@article{ZNSL_2004_310_a6,
author = {S. E. Pastukhova},
title = {About homogenization of elasticity problems on combined structures},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {114--144},
year = {2004},
volume = {310},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/}
}
S. E. Pastukhova. About homogenization of elasticity problems on combined structures. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 35, Tome 310 (2004), pp. 114-144. http://geodesic.mathdoc.fr/item/ZNSL_2004_310_a6/
[1] V. V. Zhikov, S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh setkakh kriticheskoi tolschiny”, Doklady RAN, 385:5 (2002), 590–595 | MR | Zbl
[2] V. V. Zhikov, S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh setkakh kriticheskoi tolschiny”, Matem. sb., 194:5 (2003), 61–95 | MR
[3] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh yaschichnykh strukturakh kriticheskoi tolschiny”, Doklady RAN, 387:4 (2002), 447–451 | MR | Zbl
[4] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh sterzhnevykh karkasakh kriticheskoi tolschiny”, Doklady RAN, 394:1 (2004), 26–31 | MR | Zbl
[5] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti na periodicheskikh yaschichnykh i sterzhnevykh karkasakh kriticheskoi tolschiny”, Sovremennaya matematika i ee prilozheniya, 12 (2004), 51–98 | MR | Zbl
[6] V. V. Zhikov, “Ob odnom rasshirenii i primenenii metoda dvukhmasshtabnoi skhodimosti”, Matem. sb., 191:7 (2000), 31–72 | MR | Zbl
[7] V. V. Zhikov, “Usrednenie zadach teorii uprugosti na singulyarnykh strukturakh”, Izvestiya RAN. Seriya matem., 66:2 (2002), 81–148 | MR | Zbl
[8] V. V. Zhikov, “O dvukhmasshtabnoi skhodimosti”, Trudy seminara imeni I. G. Petrovskogo, 23, 2003, 149–187 | MR | Zbl
[9] G. Nguetseng, “A general convergence result for a functional related to the theory of gomogenization”, SIAM J. Math. Anal., 20:5 (1989), 608–623 | DOI | MR | Zbl
[10] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:5 (1992), 1482–1518 | DOI | MR | Zbl
[11] S. E. Pastukhova, “Usrednenie zadach teorii uprugosti dlya periodicheskoi sostavnoi struktury”, Doklady RAN, 395:3 (2004), 316–321 | MR | Zbl
[12] S. E. Pastukhova, “Ob approksimativnykh svoistvakh sobolevskikh prostranstv teorii uprugosti na tonkikh sterzhnevykh strukturakh”, Sovremennaya matematika i ee prilozheniya, 12 (2004), 99–106 | MR | Zbl
[13] V. V. Zhikov, “K tekhnike usredneniya variatsionnykh zadach”, Funkts. analiz i ego prilozheniya, 33:1 (1999), 14–29 | MR | Zbl
[14] V. V. Zhikov, “O vesovykh sobolevskikh prostranstvakh”, Matem. sb., 189:8 (1998), 27–58 | MR | Zbl
[15] V. V. Zhikov, “Note on Sobolev space”, Contemporary Mathematics and Its Applications, 10, 2003, 54–58
[16] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl
[17] S. E. Pastukhova, “O skhodimosti giperbolicheskikh polugrupp v peremennom gilbertovom prostranstve”, Trudy seminara imeni I. G. Petrovskogo, 24, 2004, 216–241