A~note on the canonical form for a~pair of orthoprojectors
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $P$ and $Q$ be orthoprojectors in $\mathbb C^n$. The canonical form for $P$ and $Q$ is constracted as their common block diagonal form with diagonal blocks of order one or two. The entries in the $2\times 2$ blocks of the canonical form are then interpreted in terms of the canonical angles between the subspaces $\mathcal L=\operatorname{im}P$ and $\mathcal M=\operatorname{im}Q$.
			
            
            
            
          
        
      @article{ZNSL_2004_309_a1,
     author = {A. George and Kh. D. Ikramov},
     title = {A~note on the canonical form for a~pair of orthoprojectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {309},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/}
}
                      
                      
                    A. George; Kh. D. Ikramov. A~note on the canonical form for a~pair of orthoprojectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/