A note on the canonical form for a pair of orthoprojectors
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $P$ and $Q$ be orthoprojectors in $\mathbb C^n$. The canonical form for $P$ and $Q$ is constracted as their common block diagonal form with diagonal blocks of order one or two. The entries in the $2\times 2$ blocks of the canonical form are then interpreted in terms of the canonical angles between the subspaces $\mathcal L=\operatorname{im}P$ and $\mathcal M=\operatorname{im}Q$.
@article{ZNSL_2004_309_a1,
author = {A. George and Kh. D. Ikramov},
title = {A~note on the canonical form for a~pair of orthoprojectors},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--22},
year = {2004},
volume = {309},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/}
}
A. George; Kh. D. Ikramov. A note on the canonical form for a pair of orthoprojectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/
[1] D. B. Wales, “Connections between finite linear groups and linear algebra”, Linear Multilinear Algebra, 7 (1979), 267–279 | DOI | MR | Zbl
[2] H. F. Blichfeldt, Finite Collineation Groups, University of Chicago Press, 1917
[3] D. Z̆. Djoković, “Unitary similarity of projectors”, Aeq. Math., 42 (1991), 220–224 | DOI | MR | Zbl
[4] G. W. Stewart, J. Sun, Matrix Perturbation Theory, Academic Press, 1990 | MR | Zbl
[5] H. K. Wimmer, “Canonical angles of unitary spaces and perturbations of direct complements”, Linear Algebra Appl., 287 (1999), 373–379 | DOI | MR | Zbl