A~note on the canonical form for a~pair of orthoprojectors
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ and $Q$ be orthoprojectors in $\mathbb C^n$. The canonical form for $P$ and $Q$ is constracted as their common block diagonal form with diagonal blocks of order one or two. The entries in the $2\times 2$ blocks of the canonical form are then interpreted in terms of the canonical angles between the subspaces $\mathcal L=\operatorname{im}P$ and $\mathcal M=\operatorname{im}Q$.
@article{ZNSL_2004_309_a1,
     author = {A. George and Kh. D. Ikramov},
     title = {A~note on the canonical form for a~pair of orthoprojectors},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {309},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/}
}
TY  - JOUR
AU  - A. George
AU  - Kh. D. Ikramov
TI  - A~note on the canonical form for a~pair of orthoprojectors
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 17
EP  - 22
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/
LA  - ru
ID  - ZNSL_2004_309_a1
ER  - 
%0 Journal Article
%A A. George
%A Kh. D. Ikramov
%T A~note on the canonical form for a~pair of orthoprojectors
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 17-22
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/
%G ru
%F ZNSL_2004_309_a1
A. George; Kh. D. Ikramov. A~note on the canonical form for a~pair of orthoprojectors. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVII, Tome 309 (2004), pp. 17-22. http://geodesic.mathdoc.fr/item/ZNSL_2004_309_a1/