On the coincidence of limit shapes for integer partitions and compositions, and a slicing of Young diagrams
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 266-280 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a slicing of Young diagrams into slices associated with summands that have equal multiplicities. It is shown that for the uniform measure on all partitions of an integer $n$, as well as for the uniform measure on partitions of an integer $n$ into $m$ summands, $m\sim An^\alpha$, $\alpha\le1/2$, all slices after rescaling concentrate around their limit shapes. The similar problem is solved for compositions of an integer $n$ into $m$ summands. These results are applied to explain why limit shapes of partitions and compositions coincide in the case $\alpha<1/2$.
@article{ZNSL_2004_307_a8,
     author = {Yu. V. Yakubovich},
     title = {On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {266--280},
     year = {2004},
     volume = {307},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
TI  - On the coincidence of limit shapes for integer partitions and compositions, and a slicing of Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 266
EP  - 280
VL  - 307
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/
LA  - ru
ID  - ZNSL_2004_307_a8
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%T On the coincidence of limit shapes for integer partitions and compositions, and a slicing of Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 266-280
%V 307
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/
%G ru
%F ZNSL_2004_307_a8
Yu. V. Yakubovich. On the coincidence of limit shapes for integer partitions and compositions, and a slicing of Young diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 266-280. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/

[1] S. Corteel, B. Pittel, C. D. Savage, H. S. Wilf, “On the multiplicity of parts in a random partition”, Random Structures Algorithms, 14:2 (1999), 185–197 | 3.0.CO;2-F class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] P. Erdős, J. Lehner, “The distribution of the number of summands in the partitions of a positive integer”, Duke Math. J., 8 (1941), 335–345 | DOI | MR

[3] B. Fristedt, “The structure of random partitions of large integers”, Trans. Amer. Math. Soc., 337:2 (1993), 703–735 | DOI | MR | Zbl

[4] H. Gupta, “On an asympltotic formula in partitions”, Proc. Indian Acad. Sci., Sect. A, 16 (1942), 101–102 | MR | Zbl

[5] P. Hitczenko, C. D. Savage, “On the multiplicity of parts in a random composition of a large integer”, SIAM J. Discrete Math. (to appear) | MR

[6] A. Vershik, “Statisticheskaya mekhanika kombinatornykh razbienii i ikh predelnye konfiguratsii”, Funkts. anal. i ego pril., 30:2 (1996), 19–30 | MR | Zbl

[7] A. Vershik, “Predelnoe raspredelenie energii kvantovogo idealnogo gaza s tochki zreniya teorii razbienii naturalnykh chisel”, UMN, 52:2 (1997), 139–146 | MR | Zbl

[8] A. Vershik, Yu. Yakubovich, “Limit shape and fluctuations of random partitions of naturals with fixed number of summands”, Moscow Math. J., 1:3 (2001), 457–468 | MR | Zbl

[9] A. Vershik, Yu. Yakubovich, “Asimptotika ravnomernoi mery na simpleksakh, sluchainye kompozitsii i razbieniya”, Funkts. anal. i ego pril., 37:4 (2003), 39–48 | MR | Zbl

[10] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR