On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of Young diagrams
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 266-280

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a slicing of Young diagrams into slices associated with summands that have equal multiplicities. It is shown that for the uniform measure on all partitions of an integer $n$, as well as for the uniform measure on partitions of an integer $n$ into $m$ summands, $m\sim An^\alpha$, $\alpha\le1/2$, all slices after rescaling concentrate around their limit shapes. The similar problem is solved for compositions of an integer $n$ into $m$ summands. These results are applied to explain why limit shapes of partitions and compositions coincide in the case $\alpha1/2$.
@article{ZNSL_2004_307_a8,
     author = {Yu. V. Yakubovich},
     title = {On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of {Young} diagrams},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {266--280},
     publisher = {mathdoc},
     volume = {307},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/}
}
TY  - JOUR
AU  - Yu. V. Yakubovich
TI  - On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of Young diagrams
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 266
EP  - 280
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/
LA  - ru
ID  - ZNSL_2004_307_a8
ER  - 
%0 Journal Article
%A Yu. V. Yakubovich
%T On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of Young diagrams
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 266-280
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/
%G ru
%F ZNSL_2004_307_a8
Yu. V. Yakubovich. On the coincidence of limit shapes for integer partitions and compositions, and a~slicing of Young diagrams. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 266-280. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a8/