Uniform infinite planar triangulation and related branching process
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 141-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the uniform infinite planar triangulation, which is the weak limit of the uniform distributions on finite rooted sphere triangulations with a given number of triangles $N$ as $N\to\infty$. The main question we study is the asymptotic behaviour of the triangulation profile, which we define as follows. Take a ball of radius $R$ in an infinite triangulation. One of its boundary components separates this ball from the infinite part of the triangulation. We denote the length of this component by $\ell(R)$ and call the sequence $\ell(R)$, $R=1,2,\dots$, the triangulation profile. We prove that the ratio $\ell(R)/R^2$ converges to a nondegenerate random variable. We establish a connection between the triangulation profile and a certain time-reversed critical branching process. We also show that there exists a contour of length linear in $R$ that lies outside the $R$-ball and separates the $R$-ball from the infinite part of the triangulation.
@article{ZNSL_2004_307_a4,
     author = {M. A. Krikun},
     title = {Uniform infinite planar triangulation and related branching process},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--174},
     year = {2004},
     volume = {307},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/}
}
TY  - JOUR
AU  - M. A. Krikun
TI  - Uniform infinite planar triangulation and related branching process
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 141
EP  - 174
VL  - 307
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/
LA  - ru
ID  - ZNSL_2004_307_a4
ER  - 
%0 Journal Article
%A M. A. Krikun
%T Uniform infinite planar triangulation and related branching process
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 141-174
%V 307
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/
%G ru
%F ZNSL_2004_307_a4
M. A. Krikun. Uniform infinite planar triangulation and related branching process. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 141-174. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/

[1] O. Angel, O. Schramm, Uniform infinite planar triangulations, , 2002 arXiv: /math.PR/0207153 | MR

[2] O. Angel, Growth and percolation on the uniform random infinite planar triangulation, , 2002 arXiv: /math.PR/0208123

[3] Ya. Gulden, D. Dzhekson, Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[4] W. Tutte, “A census of planar triangulations”, Canad. J. Math., 14 (1962), 21–38 | DOI | MR | Zbl

[5] M. Krikun, V. A. Malyshev, “Random boundary of a planar map”, Trends in Mathematics. Mathematics and Computer Science, II, eds. D. Gardy, A. Mokkadem, Birkhauser, 2002, 83–93 | MR | Zbl

[6] B. L. Richmond, N. C. Wormald, “Almost all maps are asymmetric”, J. Combin. Theory B, 63:1 (1995), 1–7 | DOI | MR | Zbl

[7] J. Ambjorn, Y. Watabiki, “Scaling in quantum gravity”, Nucl. Phys. B, 445:1 (1995), 129–142 | DOI | MR

[8] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR