@article{ZNSL_2004_307_a4,
author = {M. A. Krikun},
title = {Uniform infinite planar triangulation and related branching process},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {141--174},
year = {2004},
volume = {307},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/}
}
M. A. Krikun. Uniform infinite planar triangulation and related branching process. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 141-174. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a4/
[1] O. Angel, O. Schramm, Uniform infinite planar triangulations, , 2002 arXiv: /math.PR/0207153 | MR
[2] O. Angel, Growth and percolation on the uniform random infinite planar triangulation, , 2002 arXiv: /math.PR/0208123
[3] Ya. Gulden, D. Dzhekson, Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR
[4] W. Tutte, “A census of planar triangulations”, Canad. J. Math., 14 (1962), 21–38 | DOI | MR | Zbl
[5] M. Krikun, V. A. Malyshev, “Random boundary of a planar map”, Trends in Mathematics. Mathematics and Computer Science, II, eds. D. Gardy, A. Mokkadem, Birkhauser, 2002, 83–93 | MR | Zbl
[6] B. L. Richmond, N. C. Wormald, “Almost all maps are asymmetric”, J. Combin. Theory B, 63:1 (1995), 1–7 | DOI | MR | Zbl
[7] J. Ambjorn, Y. Watabiki, “Scaling in quantum gravity”, Nucl. Phys. B, 445:1 (1995), 129–142 | DOI | MR
[8] U. Tatt, Teoriya grafov, Mir, M., 1988 | MR