Finite factor representations of 2-step nilpotent groups, and orbit theory
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 120-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we describe factor representations of discrete 2-step nilpotent groups with 2-divisible center. We show that some standard theorems of the orbit theory are valid in the case of these groups. For countable 2-step nilpotent groups, we explain how to construct a factor representation starting from the orbit of the “coadjoint representation.” We also prove that every factor representation (more precisely, every trace) can be obtained by this construction, and prove a theorem on the decomposition of the factor representation restricted to a subgroup.
@article{ZNSL_2004_307_a3,
     author = {K. P. Kokhas'},
     title = {Finite factor representations of 2-step nilpotent groups, and orbit theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--140},
     year = {2004},
     volume = {307},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/}
}
TY  - JOUR
AU  - K. P. Kokhas'
TI  - Finite factor representations of 2-step nilpotent groups, and orbit theory
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2004
SP  - 120
EP  - 140
VL  - 307
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/
LA  - ru
ID  - ZNSL_2004_307_a3
ER  - 
%0 Journal Article
%A K. P. Kokhas'
%T Finite factor representations of 2-step nilpotent groups, and orbit theory
%J Zapiski Nauchnykh Seminarov POMI
%D 2004
%P 120-140
%V 307
%U http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/
%G ru
%F ZNSL_2004_307_a3
K. P. Kokhas'. Finite factor representations of 2-step nilpotent groups, and orbit theory. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 120-140. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/

[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:6 (1962), 57–110 | MR | Zbl

[2] K. P. Kokhas, “Klassifikatsiya konechnykh faktorpredstavlenii $(2m+1)$-mernoi gruppy Geizenberga nad schetnym polem konechnoi kharakteristiki”, Funkts. anal. i ego pril., 36:3, 79–83 | MR | Zbl

[3] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[4] S. V. Smirnov, “Polozhitelno opredelennye funktsii na algebraicheskikh nilpotentnykh gruppakh nad diskretnym polem”, DAN SSSR, 170:3 (1966), 524–525 | MR | Zbl

[5] R. Howe, “On representations of discrete, finitely generated, torsion-free, nilpotent groups”, Pacific J. Math., 73:2 (1977), 281–305 | MR | Zbl

[6] A. Mihailovs, The orbit method for finite groups of nilpontency class two of odd order, arXiv: /math.RT/0001092

[7] E. Thoma, “Über unitäre Darstellung abzählbarer, diskreter Gruppen”, Math. Ann., 153 (1964), 111–138 | DOI | MR | Zbl