@article{ZNSL_2004_307_a3,
author = {K. P. Kokhas'},
title = {Finite factor representations of 2-step nilpotent groups, and orbit theory},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--140},
year = {2004},
volume = {307},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/}
}
K. P. Kokhas'. Finite factor representations of 2-step nilpotent groups, and orbit theory. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part X, Tome 307 (2004), pp. 120-140. http://geodesic.mathdoc.fr/item/ZNSL_2004_307_a3/
[1] A. A. Kirillov, “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:6 (1962), 57–110 | MR | Zbl
[2] K. P. Kokhas, “Klassifikatsiya konechnykh faktorpredstavlenii $(2m+1)$-mernoi gruppy Geizenberga nad schetnym polem konechnoi kharakteristiki”, Funkts. anal. i ego pril., 36:3, 79–83 | MR | Zbl
[3] M. A. Naimark, Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl
[4] S. V. Smirnov, “Polozhitelno opredelennye funktsii na algebraicheskikh nilpotentnykh gruppakh nad diskretnym polem”, DAN SSSR, 170:3 (1966), 524–525 | MR | Zbl
[5] R. Howe, “On representations of discrete, finitely generated, torsion-free, nilpotent groups”, Pacific J. Math., 73:2 (1977), 281–305 | MR | Zbl
[6] A. Mihailovs, The orbit method for finite groups of nilpontency class two of odd order, arXiv: /math.RT/0001092
[7] E. Thoma, “Über unitäre Darstellung abzählbarer, diskreter Gruppen”, Math. Ann., 153 (1964), 111–138 | DOI | MR | Zbl