Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of free interpolation for the spaces of analytic functions with derivative of order $s$ in the Hardy space $H^p$. For the sets that satisfy the Stolz condition, we obtain a condition necessary for interpolation: if $1\leq p<\infty$, then the set must be a union of $s$ sparse sets. For $p=\infty$, we obtain a necessary and sufficient condition for interpolation: the set must be a union of $s+1$ sparse sets. In this case, we construct an extension operator.
@article{ZNSL_2003_303_a9,
     author = {A. M. Kotochigov},
     title = {Free interpolation in the spaces of analytic functions with derivative of order~$s$ in {a~Hardy} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--202},
     year = {2003},
     volume = {303},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/}
}
TY  - JOUR
AU  - A. M. Kotochigov
TI  - Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 169
EP  - 202
VL  - 303
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/
LA  - ru
ID  - ZNSL_2003_303_a9
ER  - 
%0 Journal Article
%A A. M. Kotochigov
%T Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 169-202
%V 303
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/
%G ru
%F ZNSL_2003_303_a9
A. M. Kotochigov. Free interpolation in the spaces of analytic functions with derivative of order $s$ in a Hardy space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/

[1] L. Carleson, “An interpolation problem for bounded analytic functions”, Am. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[2] H. S. Shapiro, A. Shields, “On some interpolaton problems for analytic functions”, Am. J. Math., 83 (1961), 513–532 | DOI | MR | Zbl

[3] A. M. Kotochigov, “Interpolyatsiya analiticheskimi funktsiyami, gladkimi vplot do granitsy”, Zap. nauchn. semin. LOMI, 30, 1972, 167–169 | Zbl

[4] E. M. Dynkin, “Mnozhestva svobodnoi interpolyatsii dlya klassov Geldera”, Mat. sb., 109:1 (1979), 107–128 | MR

[5] N. A. Shirokov, “Svobodnaya interpolyatsiya v prostranstvakh $C^A_{r,\omega}$”, Mat. sb., 117(159):3 (1982), 337–358 | MR | Zbl

[6] J. Bruna, “Les ensemblees d'interpolation des $A^p(D)$”, C. R. Acad. Sci. Paris, Ser. A, 290 (1980), 25–27 | MR | Zbl

[7] E. M. Dynkin, “Svobodnaya interpolyatsiya funktsiyami s proizvodnoi iz $H^1$”, Zap. nauchn. semin. LOMI, 126, 1983, 77–87 | MR

[8] S. A. Vinogradov, “Ob interpolyatsii stepennykh ryadov, absolyutno skhodyaschikhsya na granitse kruga skhodimosti”, Vestnik LGU, ser. matem., 7 (1965), 30–44 | MR | Zbl

[9] A. O. Gelfond, Ischislenie konechnykh raznostei, M., 1952 | Zbl

[10] B. I. Korenblyum, V. S. Korolevich, “Ob analiticheskikh funktsiyakh, regulyarnykh v kruge i gladkikh na ego granitse”, Mat. zametki, 7:2 (1970), 165–172 | Zbl

[11] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$, M., 1984 | MR | Zbl