Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of free interpolation for the spaces of analytic functions with derivative of order $s$ in the Hardy space $H^p$. For the sets that satisfy the Stolz condition, we obtain a condition necessary for interpolation: if $1\leq p\infty$, then the set must be a union of $s$ sparse sets. For $p=\infty$, we obtain a necessary and sufficient condition for interpolation: the set must be a union of $s+1$ sparse sets. In this case, we construct an extension operator.
@article{ZNSL_2003_303_a9,
     author = {A. M. Kotochigov},
     title = {Free interpolation in the spaces of analytic functions with derivative of order~$s$ in {a~Hardy} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--202},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/}
}
TY  - JOUR
AU  - A. M. Kotochigov
TI  - Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 169
EP  - 202
VL  - 303
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/
LA  - ru
ID  - ZNSL_2003_303_a9
ER  - 
%0 Journal Article
%A A. M. Kotochigov
%T Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 169-202
%V 303
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/
%G ru
%F ZNSL_2003_303_a9
A. M. Kotochigov. Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/