Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of free interpolation for the spaces of analytic functions with derivative of order $s$ in the Hardy space $H^p$. For the sets that satisfy the Stolz condition, we obtain a condition necessary for interpolation: if $1\leq p\infty$, then the set must be a union of $s$  sparse sets. For $p=\infty$, we obtain a necessary and sufficient condition for interpolation: the set must be a union of $s+1$ sparse sets. In this case, we construct an extension operator.
			
            
            
            
          
        
      @article{ZNSL_2003_303_a9,
     author = {A. M. Kotochigov},
     title = {Free interpolation in the spaces of analytic functions with derivative of order~$s$ in {a~Hardy} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {169--202},
     publisher = {mathdoc},
     volume = {303},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/}
}
                      
                      
                    TY - JOUR AU - A. M. Kotochigov TI - Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 169 EP - 202 VL - 303 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/ LA - ru ID - ZNSL_2003_303_a9 ER -
A. M. Kotochigov. Free interpolation in the spaces of analytic functions with derivative of order~$s$ in a~Hardy space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 31, Tome 303 (2003), pp. 169-202. http://geodesic.mathdoc.fr/item/ZNSL_2003_303_a9/