On algebras of skew polynomials generated by quadratic homogeneous relations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations $ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.
@article{ZNSL_2003_301_a3,
     author = {A. V. Golovashkin and V. M. Maximov},
     title = {On algebras of skew polynomials generated by quadratic homogeneous relations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--171},
     publisher = {mathdoc},
     volume = {301},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/}
}
TY  - JOUR
AU  - A. V. Golovashkin
AU  - V. M. Maximov
TI  - On algebras of skew polynomials generated by quadratic homogeneous relations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 144
EP  - 171
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/
LA  - ru
ID  - ZNSL_2003_301_a3
ER  - 
%0 Journal Article
%A A. V. Golovashkin
%A V. M. Maximov
%T On algebras of skew polynomials generated by quadratic homogeneous relations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 144-171
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/
%G ru
%F ZNSL_2003_301_a3
A. V. Golovashkin; V. M. Maximov. On algebras of skew polynomials generated by quadratic homogeneous relations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/