On algebras of skew polynomials generated by quadratic homogeneous relations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations
$ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.
			
            
            
            
          
        
      @article{ZNSL_2003_301_a3,
     author = {A. V. Golovashkin and V. M. Maximov},
     title = {On algebras of skew polynomials generated by quadratic homogeneous relations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--171},
     publisher = {mathdoc},
     volume = {301},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/}
}
                      
                      
                    TY - JOUR AU - A. V. Golovashkin AU - V. M. Maximov TI - On algebras of skew polynomials generated by quadratic homogeneous relations JO - Zapiski Nauchnykh Seminarov POMI PY - 2003 SP - 144 EP - 171 VL - 301 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/ LA - ru ID - ZNSL_2003_301_a3 ER -
A. V. Golovashkin; V. M. Maximov. On algebras of skew polynomials generated by quadratic homogeneous relations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/