On algebras of skew polynomials generated by quadratic homogeneous relations
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations $ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.
@article{ZNSL_2003_301_a3,
     author = {A. V. Golovashkin and V. M. Maximov},
     title = {On algebras of skew polynomials generated by quadratic homogeneous relations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {144--171},
     year = {2003},
     volume = {301},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/}
}
TY  - JOUR
AU  - A. V. Golovashkin
AU  - V. M. Maximov
TI  - On algebras of skew polynomials generated by quadratic homogeneous relations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 144
EP  - 171
VL  - 301
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/
LA  - ru
ID  - ZNSL_2003_301_a3
ER  - 
%0 Journal Article
%A A. V. Golovashkin
%A V. M. Maximov
%T On algebras of skew polynomials generated by quadratic homogeneous relations
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 144-171
%V 301
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/
%G ru
%F ZNSL_2003_301_a3
A. V. Golovashkin; V. M. Maximov. On algebras of skew polynomials generated by quadratic homogeneous relations. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 144-171. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a3/

[1] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i pril., 16 (1982), 27–34 | MR | Zbl

[2] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera. II: Predstavlenie kvantovoi algebry”, Funkts. analiz i pril., 17 (1983), 34–48 | MR | Zbl

[3] F. H. Jackson, “$q$-Difference Equations”, Amer. J. Math., 32 (1910), 305–314 | DOI | MR | Zbl

[4] W. Hahn, “Orthogonalpolynome, die $q$-Differenzengleihungen genugen”, Math. Nachr., 2 (1949), 4–34 | DOI | MR | Zbl

[5] N. Ja. Vilenkin, A. U. Klimuk, Representation of Lie grours and spesial functions, V. 3, Kluwer Academic Publishers, 1992 | Zbl

[6] V. L. Ostrovskii, Yu. S. Samoilenko, “Predstavleniya $*$-algebr s dvumya obrazuyuschimi i polinomialnymi sootnosheniyami”, Zap. nauchn. semin. LOMI, 172, 1989, 121–129 | MR

[7] V. L. Ostrovskii, Yu. S. Samoilenko, Structure theorems for a pair of unbounded selfadjoint operators satisfying quadratic relation. Infinite-dimentional representations of quadratic and polynomial *-algebras, Preprint Acad. Sci. Ukr. SSR. Inst. Math. No 91.4, 1991 | MR

[8] V. A. Ufnarovskii, Algebra-6, Itogi nauki i tekhniki, 57, 1990 | MR

[9] A. M. Vershik, “Algebras with quadratic relations”, Selecta Math. Sov., 11 (1992), 293–315 | MR

[10] A. V. Golovashkin, V. M. Maksimov, “O kosykh polinomakh Ore vysshikh poryadkov, porozhdaemykh odnorodnymi kvadratichnymi sootnosheniyami”, UMN, 53 (1998), 145–146 | MR | Zbl

[11] O. Ore, “Theory of noncomutative polynomials”, Ann. Math., 32 (1931), 463–477 | DOI | MR

[12] T. H. M. Smits, “Skew polynomial rings”, Indag. Math., 30 (1968), 209–224 | MR

[13] F. Dumas, “Sous-corps de fraction rationnelles des corps gauches de series de Laurent”, Lecture Notes in Math., 1478, 1991, 192–214 | MR | Zbl

[14] V. M. Maksimov, “Ob odnom obobschenii koltsa kosykh polinomov Ore”, UMN, 55 (2000), 215–216 | MR | Zbl

[15] V. M. Maximov, “Canonical forms of skew polynomial rings”, Zap. nauchn. semin. POMI, 292, 2002, 40–61 | MR

[16] P. Kon, Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR