Multidimensional hypergeometric distribution, and characters of the unitary group
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 35-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is the publication of work notes by S. V. Kerov (1946–2000) written in 1993. The author introduces a multidimensional analog of the classical hypergeometric distribution. This is a probability measure $M_n$ on the set of Young diagrams contained in the rectangle with $n$ rows and $m$ columns. The fact that the expression for $M_n$ defines a probability measure is a nontrivial combinatorial identity, which is proved in various ways. Another combinatorial identity analyzed in the paper expresses a certain compatibility of the measures $M_n$ and $M_{n+1}$. A link with Selberg type integrals is also pointed out. The work is motivated by the problem of harmonic analysis on the infinite-dimensional unitary group.
@article{ZNSL_2003_301_a1,
     author = {S. V. Kerov},
     title = {Multidimensional hypergeometric distribution, and  characters of the unitary group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {35--91},
     publisher = {mathdoc},
     volume = {301},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a1/}
}
TY  - JOUR
AU  - S. V. Kerov
TI  - Multidimensional hypergeometric distribution, and  characters of the unitary group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 35
EP  - 91
VL  - 301
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a1/
LA  - ru
ID  - ZNSL_2003_301_a1
ER  - 
%0 Journal Article
%A S. V. Kerov
%T Multidimensional hypergeometric distribution, and  characters of the unitary group
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 35-91
%V 301
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a1/
%G ru
%F ZNSL_2003_301_a1
S. V. Kerov. Multidimensional hypergeometric distribution, and  characters of the unitary group. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part IX, Tome 301 (2003), pp. 35-91. http://geodesic.mathdoc.fr/item/ZNSL_2003_301_a1/