@article{ZNSL_2003_300_a12,
author = {L. Galgani and A. Giorgilli},
title = {Recent results on the {Fermi{\textendash}Pasta{\textendash}Ulam} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--154},
year = {2003},
volume = {300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/}
}
L. Galgani; A. Giorgilli. Recent results on the Fermi–Pasta–Ulam problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 145-154. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/
[1] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos document LA–1940, 1955 | Zbl
[2] F. M. Izrailev, B. V. Chirikov, “Stochasticity of the simpliest dynamical model with divided phase space”, Dokl. Akad. Nauk. SSSR, 166 (1966), 57
[3] A. M. Kolmogorov, “Preservation of conditionally periodic movements with small change in the Hamilton function”, Dokl. Akad. Nauk SSSR, 98 (1954), 527 | MR | Zbl
[4] J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Gött, II Math. Phys. Kl., 1962 (1962), 1–20 | MR | Zbl
[5] V. I. Arnold, “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”, Usp. Mat. Nauk, 18 (1963), 13 | MR
[6] D. L. Shepelyansky, “Low–energy chaos in the Fermi–Pasta–Ulam problem”, Nonlinearity, 10 (1997), 1331–1338 | DOI | MR | Zbl
[7] P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, “Anharmonic chain with Lennard–Jones interaction”, Phys. Rew. A, 2 (1970), 2013–2019 | DOI
[8] M. C. Carotta, C. Ferrario, G. Lo Vecchio, B. Carazza, L. Galgani, “New phenomenon in the stochastic transition of coupled oscillators”, Phys. Rev. A, 17 (1978), 786 | DOI
[9] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Relaxation to different stationary states in the Fermi–Pasta–Ulam model”, Phys. Rev. A, 28 (1983), 3544–3552 | DOI
[10] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model”, Phys. Rev. A, 31 (1985), 1039–1045 | DOI
[11] R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Further results on the equipartition threshold in large nonlinear Hamiltonian systems”, Phys. Rev. A, 31 (1985), 2740–2742 | DOI
[12] S. Isola, R. Livi, S. Ruffo, A. Vulpiani, “Stability and chaos in Hamiltonian dynamics”, Pys. Rev. A, 33 (1986), 1163–1170 | DOI | MR
[13] R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium statistical mechanics”, J. Stat. Phys., 48 (1987), 539–559 | DOI | MR | Zbl
[14] H. Kantz, “Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems”, Physica D, 39 (1989), 322–335 | DOI | MR | Zbl
[15] M. Pettini, M. Landolfi, “Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics”, Phys. Rev. A, 41 (1990), 768–783 | DOI | MR
[16] M. Pettini, M. Cerruti-Sola, “Strong stochasticity threshold in nonlinear Hamiltonian systems: effect of mixing times”, Phys. Rev. A, 44 (1991), 975–987 | DOI
[17] H. Kantz, R. Livi, S. Ruffo, “Equipartition thresholds in chains of anharmonic oscillators”, J. Stat. Phys., 76 (1994), 627–643 | DOI | MR
[18] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Energy transition and time scale to equipartition in the Fermi–Pasta–Ulam oscillator chain”, Phys. Rev. E, 51 (1995), 2877–2884 | DOI
[19] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Universal evolution to equipartition in scillator chains”, Phys. Rev. E, 54 (1996), 2329–2333 | DOI
[20] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Finite time to equiparittion in the thermodynamic limit”, Phys. Rev. E, 60 (1999), 3781–3786 | DOI
[21] A. Giorgilli, “Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point”, Ann. Ist. H. Poincaré, 48:4 (1988), 423–439 | MR | Zbl
[22] L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini, “On the problem of energy equipartition for large systems of the Fermi–Pasta–Ulam type: analytical and numerical estimates”, Physica D, 59 (1992), 334–348 | DOI | MR | Zbl
[23] G. Benettin, L. Galgani, A. Giorgilli, “Exponential law for the equipartition times among translational and vibrational degrees of freedom”, Phys. Lett. A, 120 (1987), 23–27 | DOI
[24] G. Benettin, L. Galgani, A. Giorgilli, “Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory,II”, Comm. Math. Phys., 121 (1989), 557–601 | DOI | MR | Zbl
[25] A. Carati, L. Galgani, A. Ponno, A. Giorgilli, “The Fermi–Pasta–Ulam problem”, N. Cim. (to appear)