Recent results on the Fermi–Pasta–Ulam problem
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 145-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The celebrated model of Fermi, Pasta, and Ulam with the aim of investigating the thresholds to equipartition in the thermodynamic limit is revisited. Starting with a particular class of initial conditions, i.e., with all the energy on the first mode, we observe that in a short time the system splits in two separate subsystems. We conjecture the existence of a function $\epsilon_c(\omega)$, independent on the number $N$ of particles in the chain, such that if the initial energy $E$ satisfies $E/N<\epsilon_c(\omega)$ then only the packet of modes with frequency not exceeding $\omega$ shares most of the energy.
@article{ZNSL_2003_300_a12,
     author = {L. Galgani and A. Giorgilli},
     title = {Recent results on the {Fermi{\textendash}Pasta{\textendash}Ulam} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--154},
     year = {2003},
     volume = {300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/}
}
TY  - JOUR
AU  - L. Galgani
AU  - A. Giorgilli
TI  - Recent results on the Fermi–Pasta–Ulam problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 145
EP  - 154
VL  - 300
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/
LA  - en
ID  - ZNSL_2003_300_a12
ER  - 
%0 Journal Article
%A L. Galgani
%A A. Giorgilli
%T Recent results on the Fermi–Pasta–Ulam problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 145-154
%V 300
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/
%G en
%F ZNSL_2003_300_a12
L. Galgani; A. Giorgilli. Recent results on the Fermi–Pasta–Ulam problem. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems. Part VIII, Tome 300 (2003), pp. 145-154. http://geodesic.mathdoc.fr/item/ZNSL_2003_300_a12/

[1] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos document LA–1940, 1955 | Zbl

[2] F. M. Izrailev, B. V. Chirikov, “Stochasticity of the simpliest dynamical model with divided phase space”, Dokl. Akad. Nauk. SSSR, 166 (1966), 57

[3] A. M. Kolmogorov, “Preservation of conditionally periodic movements with small change in the Hamilton function”, Dokl. Akad. Nauk SSSR, 98 (1954), 527 | MR | Zbl

[4] J. Moser, “On invariant curves of area-preserving mappings of an annulus”, Nachr. Akad. Wiss. Gött, II Math. Phys. Kl., 1962 (1962), 1–20 | MR | Zbl

[5] V. I. Arnold, “Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian”, Usp. Mat. Nauk, 18 (1963), 13 | MR

[6] D. L. Shepelyansky, “Low–energy chaos in the Fermi–Pasta–Ulam problem”, Nonlinearity, 10 (1997), 1331–1338 | DOI | MR | Zbl

[7] P. Bocchieri, A. Scotti, B. Bearzi, A. Loinger, “Anharmonic chain with Lennard–Jones interaction”, Phys. Rew. A, 2 (1970), 2013–2019 | DOI

[8] M. C. Carotta, C. Ferrario, G. Lo Vecchio, B. Carazza, L. Galgani, “New phenomenon in the stochastic transition of coupled oscillators”, Phys. Rev. A, 17 (1978), 786 | DOI

[9] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Relaxation to different stationary states in the Fermi–Pasta–Ulam model”, Phys. Rev. A, 28 (1983), 3544–3552 | DOI

[10] R. Livi, M. Pettini, S. Ruffo, M. Sparpaglione, A. Vulpiani, “Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi–Pasta–Ulam model”, Phys. Rev. A, 31 (1985), 1039–1045 | DOI

[11] R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Further results on the equipartition threshold in large nonlinear Hamiltonian systems”, Phys. Rev. A, 31 (1985), 2740–2742 | DOI

[12] S. Isola, R. Livi, S. Ruffo, A. Vulpiani, “Stability and chaos in Hamiltonian dynamics”, Pys. Rev. A, 33 (1986), 1163–1170 | DOI | MR

[13] R. Livi, M. Pettini, S. Ruffo, A. Vulpiani, “Chaotic behaviour in nonlinear Hamiltonian systems and equilibrium statistical mechanics”, J. Stat. Phys., 48 (1987), 539–559 | DOI | MR | Zbl

[14] H. Kantz, “Vanishing stability thresholds in the thermodynamic limit of nonintegrable conservative systems”, Physica D, 39 (1989), 322–335 | DOI | MR | Zbl

[15] M. Pettini, M. Landolfi, “Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics”, Phys. Rev. A, 41 (1990), 768–783 | DOI | MR

[16] M. Pettini, M. Cerruti-Sola, “Strong stochasticity threshold in nonlinear Hamiltonian systems: effect of mixing times”, Phys. Rev. A, 44 (1991), 975–987 | DOI

[17] H. Kantz, R. Livi, S. Ruffo, “Equipartition thresholds in chains of anharmonic oscillators”, J. Stat. Phys., 76 (1994), 627–643 | DOI | MR

[18] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Energy transition and time scale to equipartition in the Fermi–Pasta–Ulam oscillator chain”, Phys. Rev. E, 51 (1995), 2877–2884 | DOI

[19] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Universal evolution to equipartition in scillator chains”, Phys. Rev. E, 54 (1996), 2329–2333 | DOI

[20] J. De Luca, A. J. Lichtenberg, S. Ruffo, “Finite time to equiparittion in the thermodynamic limit”, Phys. Rev. E, 60 (1999), 3781–3786 | DOI

[21] A. Giorgilli, “Rigorous results on the power expansions for the integrals of a Hamiltonian system near an elliptic equilibrium point”, Ann. Ist. H. Poincaré, 48:4 (1988), 423–439 | MR | Zbl

[22] L. Galgani, A. Giorgilli, A. Martinoli, S. Vanzini, “On the problem of energy equipartition for large systems of the Fermi–Pasta–Ulam type: analytical and numerical estimates”, Physica D, 59 (1992), 334–348 | DOI | MR | Zbl

[23] G. Benettin, L. Galgani, A. Giorgilli, “Exponential law for the equipartition times among translational and vibrational degrees of freedom”, Phys. Lett. A, 120 (1987), 23–27 | DOI

[24] G. Benettin, L. Galgani, A. Giorgilli, “Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory,II”, Comm. Math. Phys., 121 (1989), 557–601 | DOI | MR | Zbl

[25] A. Carati, L. Galgani, A. Ponno, A. Giorgilli, “The Fermi–Pasta–Ulam problem”, N. Cim. (to appear)