Shortest inspection curves for a~sphere
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 87-108

Voir la notice de l'article provenant de la source Math-Net.Ru

What is the form of the shortest curve $C$ going outside the unit sphere $S$ in $\mathbb R^3$ such that passing along $C$ we can see all points of $S$ from outside? How will the form of $C$ change if we require that $C$ have one of its (or both) endpoints on $S$? A solution to the latter problem also answers the following question. You are in a half-space at a unit distance from the boundary plane $P$, but do not know where $P$ is. What is the shortest space curve $C$ such that going along $C$ you certainly will come to $P$? Geometric arguments are given suggesting that the required curves should be looked for in certain classes depending on several parameters. A computer analysis yields the best curves in the classes. Some other questions are solved in a similar way.
@article{ZNSL_2003_299_a5,
     author = {V. A. Zalgaller},
     title = {Shortest inspection curves for a~sphere},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {87--108},
     publisher = {mathdoc},
     volume = {299},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a5/}
}
TY  - JOUR
AU  - V. A. Zalgaller
TI  - Shortest inspection curves for a~sphere
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2003
SP  - 87
EP  - 108
VL  - 299
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a5/
LA  - ru
ID  - ZNSL_2003_299_a5
ER  - 
%0 Journal Article
%A V. A. Zalgaller
%T Shortest inspection curves for a~sphere
%J Zapiski Nauchnykh Seminarov POMI
%D 2003
%P 87-108
%V 299
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a5/
%G ru
%F ZNSL_2003_299_a5
V. A. Zalgaller. Shortest inspection curves for a~sphere. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 8, Tome 299 (2003), pp. 87-108. http://geodesic.mathdoc.fr/item/ZNSL_2003_299_a5/