Voir la notice du chapitre de livre
@article{ZNSL_2003_296_a2,
author = {L. Yu. Kolotilina},
title = {On the extreme eigenvalues of block $2\times2$ {Hermitian} matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {27--38},
year = {2003},
volume = {296},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a2/}
}
L. Yu. Kolotilina. On the extreme eigenvalues of block $2\times2$ Hermitian matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XVI, Tome 296 (2003), pp. 27-38. http://geodesic.mathdoc.fr/item/ZNSL_2003_296_a2/
[1] L. Yu. Kolotilina, “Optimalno obuslovlennye blochnye $2\times2$ matritsy”, Zap. nauchn. semin. POMI, 268, 2000, 72–85 | MR | Zbl
[2] L. Yu. Kolotilina, “Ob odnom klasse optimalno obuslovlennykh blochnykh $2\times2$ matrits”, Zap. nauchn. semin. POMI, 284, 2002, 64–76 | MR | Zbl
[3] S. C. Eisenstat, J. W. Lewis, M. H. Schultz, “Optimal block diagonal scaling of block $2$-cyclic matrices”, Linear Algebra Appl., 44 (1982), 181–186 | DOI | MR | Zbl
[4] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl
[5] B. N. Parlett, “The spectral diameter as a function of the diagonal entries”, Numer. Linear Algebra Appl. (to appear) | MR