Barut--Girardello Coherent states for the Gegenbauer oscillator
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 43-63

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Gegenbauer oscillator, which definition is suggested in this paper, for which the Gegenbauer (ultraspherical) polynomials plays the same role as the Hermite polynomials in the case of usual boson oscillator, we define the family of Barut–Girardello coherent states (the eigenstates of the relevant anihilation operator). We show the validity of unity resolution for this states and evaluate their overlaping. We also show that the given results reproduce the analogous results, obtained early, for the cases of Legendre and Chebyshev polynomials. In the later case we also construct the measure which participate in the unity resolution.
@article{ZNSL_2002_291_a3,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Barut--Girardello {Coherent} states for the {Gegenbauer} oscillator},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {43--63},
     publisher = {mathdoc},
     volume = {291},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a3/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Barut--Girardello Coherent states for the Gegenbauer oscillator
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 43
EP  - 63
VL  - 291
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a3/
LA  - ru
ID  - ZNSL_2002_291_a3
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Barut--Girardello Coherent states for the Gegenbauer oscillator
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 43-63
%V 291
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a3/
%G ru
%F ZNSL_2002_291_a3
V. V. Borzov; E. V. Damaskinsky. Barut--Girardello Coherent states for the Gegenbauer oscillator. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 17, Tome 291 (2002), pp. 43-63. http://geodesic.mathdoc.fr/item/ZNSL_2002_291_a3/