Inverse approximation theorem on an infinite union of segments
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 168-176

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E=\bigcup\limits^{\infty}_{n=-\infty}[a_n, b_n]$, where $a_n$ and $b_n$ satisfy $0$, $0$ $n=0,\pm1,\pm2$. Denote by $B_{\sigma}$ the class of all entire functions of exponential type $\le\sigma$ bounded on the real axis. Under certain assumptions on the rate of approximation on $E$ of a bounded function $f$ by functions in $B_{\sigma}$ ($\sigma$ varies), we get some information about the smoothness of $f$.
@article{ZNSL_2002_290_a7,
     author = {N. A. Shirokov},
     title = {Inverse approximation theorem on an infinite union of segments},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--176},
     publisher = {mathdoc},
     volume = {290},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a7/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - Inverse approximation theorem on an infinite union of segments
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 168
EP  - 176
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a7/
LA  - ru
ID  - ZNSL_2002_290_a7
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T Inverse approximation theorem on an infinite union of segments
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 168-176
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a7/
%G ru
%F ZNSL_2002_290_a7
N. A. Shirokov. Inverse approximation theorem on an infinite union of segments. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 168-176. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a7/