Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 122-137
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe how of boundary interpolation sets changes between the disk-algebra and Hölder spaces of analytic functions. For the disk-algebra, an interpolation set is a set of zero measure, and for Hölder classes of order $\alpha$ it is a porous set. For the Hölder-type classes corresponding to a modulus of continuity $\omega$, a certain condition of $\omega$-porosity turnes out to be necessary for free interpolation. Every set of zero measure is $\omega$-porous for some $\omega$.We prove also a Muckehoupt-type inequality that may be of use for the proof of the sufficiency of the $\omega$-porosity condition.
@article{ZNSL_2002_290_a5,
author = {A. M. Kotochigov},
title = {Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--137},
publisher = {mathdoc},
volume = {290},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/}
}
TY - JOUR AU - A. M. Kotochigov TI - Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 122 EP - 137 VL - 290 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/ LA - ru ID - ZNSL_2002_290_a5 ER -
A. M. Kotochigov. Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 122-137. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/