Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 122-137

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe how of boundary interpolation sets changes between the disk-algebra and Hölder spaces of analytic functions. For the disk-algebra, an interpolation set is a set of zero measure, and for Hölder classes of order $\alpha$ it is a porous set. For the Hölder-type classes corresponding to a modulus of continuity $\omega$, a certain condition of $\omega$-porosity turnes out to be necessary for free interpolation. Every set of zero measure is $\omega$-porous for some $\omega$.We prove also a Muckehoupt-type inequality that may be of use for the proof of the sufficiency of the $\omega$-porosity condition.
@article{ZNSL_2002_290_a5,
     author = {A. M. Kotochigov},
     title = {Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--137},
     publisher = {mathdoc},
     volume = {290},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/}
}
TY  - JOUR
AU  - A. M. Kotochigov
TI  - Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 122
EP  - 137
VL  - 290
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/
LA  - ru
ID  - ZNSL_2002_290_a5
ER  - 
%0 Journal Article
%A A. M. Kotochigov
%T Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 122-137
%V 290
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/
%G ru
%F ZNSL_2002_290_a5
A. M. Kotochigov. Structure of free interpolation sets for analytic function spaces determined by a modulus of continuity. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 30, Tome 290 (2002), pp. 122-137. http://geodesic.mathdoc.fr/item/ZNSL_2002_290_a5/