Variations on a theme of Higman
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 57-62
Voir la notice de l'article provenant de la source Math-Net.Ru
Let R be an associative ring with 1, $n\ge3$ We show that Higman's computation of the first cohomology group of the special linear group over a field with natural coefficients really shows that $H^1(\operatorname{St}(n,R),R^n)=0$ for $n\ge4$ and explicitly compute this group for $n=3$, when it does not vanish. In [6] the second-named author extended these results to all classical Steinberg groups.
@article{ZNSL_2002_289_a2,
author = {N. A. Vavilov and V. A. Petrov},
title = {Variations on a theme of {Higman}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {57--62},
publisher = {mathdoc},
volume = {289},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a2/}
}
N. A. Vavilov; V. A. Petrov. Variations on a theme of Higman. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 57-62. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a2/