Rings associated to finite projective planes and thier isomorphisms
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 207-213
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we announce an explicit form of the standard basis of the 2-extended ring associated to the cellular ring generated by the incidence graph of a finite projective plane.This enables us to find the first example of a distance-regular graph satisfying the 6-condition which is not a distance-transivite one. One more corollary of the result obtained is that the cellular rings of any two projective planes of the same order are 2-isomorphic. This implies that if there exist at least two nonisomorphic and nondual to each other projective planes of a given order, then the separability number of any projective plane of this order is greater or equal to 3 and, moreover, it is equal to 3 for a Galois plane.
@article{ZNSL_2002_289_a10,
author = {S. A. Evdokimov and I. N. Ponomarenko},
title = {Rings associated to finite projective planes and thier isomorphisms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {207--213},
publisher = {mathdoc},
volume = {289},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/}
}
TY - JOUR AU - S. A. Evdokimov AU - I. N. Ponomarenko TI - Rings associated to finite projective planes and thier isomorphisms JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 207 EP - 213 VL - 289 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/ LA - ru ID - ZNSL_2002_289_a10 ER -
S. A. Evdokimov; I. N. Ponomarenko. Rings associated to finite projective planes and thier isomorphisms. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 207-213. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/