Rings associated to finite projective planes and thier isomorphisms
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 207-213

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we announce an explicit form of the standard basis of the 2-extended ring associated to the cellular ring generated by the incidence graph of a finite projective plane.This enables us to find the first example of a distance-regular graph satisfying the 6-condition which is not a distance-transivite one. One more corollary of the result obtained is that the cellular rings of any two projective planes of the same order are 2-isomorphic. This implies that if there exist at least two nonisomorphic and nondual to each other projective planes of a given order, then the separability number of any projective plane of this order is greater or equal to 3 and, moreover, it is equal to 3 for a Galois plane.
@article{ZNSL_2002_289_a10,
     author = {S. A. Evdokimov and I. N. Ponomarenko},
     title = {Rings associated to finite projective planes and thier isomorphisms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {207--213},
     publisher = {mathdoc},
     volume = {289},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/}
}
TY  - JOUR
AU  - S. A. Evdokimov
AU  - I. N. Ponomarenko
TI  - Rings associated to finite projective planes and thier isomorphisms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 207
EP  - 213
VL  - 289
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/
LA  - ru
ID  - ZNSL_2002_289_a10
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%A I. N. Ponomarenko
%T Rings associated to finite projective planes and thier isomorphisms
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 207-213
%V 289
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/
%G ru
%F ZNSL_2002_289_a10
S. A. Evdokimov; I. N. Ponomarenko. Rings associated to finite projective planes and thier isomorphisms. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 9, Tome 289 (2002), pp. 207-213. http://geodesic.mathdoc.fr/item/ZNSL_2002_289_a10/