On the class numbers of indefinite binary quadratic forms with discriminant $dp^2$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
A number of results on the average values of the class numbers of indefinite binary quadratic forms with discriminants divisible by a large square are proved. The main result is as follows. Let $d=4n^2+1$. Then $$ \mathop{{\sum}'}_{1\le n\le X}\frac1{h(d)}\sum_{2X\le p\le3X}h(dp^2)=O(X^2), $$ where $h(d)$ is the class number for the discriminant $d$ and $\sum'$ means that the summation is performed over the square-free $d$ only.
@article{ZNSL_2002_286_a2,
author = {E. P. Golubeva},
title = {On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--47},
year = {2002},
volume = {286},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/}
}
E. P. Golubeva. On the class numbers of indefinite binary quadratic forms with discriminant $dp^2$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 40-47. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/