On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of results on the average values of the class numbers of indefinite binary quadratic forms with discriminants divisible by a large square are proved. The main result is as follows. Let $d=4n^2+1$. Then $$ \mathop{{\sum}'}_{1\le n\le X}\frac1{h(d)}\sum_{2X\le p\le3X}h(dp^2)=O(X^2), $$ where $h(d)$ is the class number for the discriminant $d$ and $\sum'$ means that the summation is performed over the square-free $d$ only.
@article{ZNSL_2002_286_a2,
     author = {E. P. Golubeva},
     title = {On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 40
EP  - 47
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/
LA  - ru
ID  - ZNSL_2002_286_a2
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 40-47
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/
%G ru
%F ZNSL_2002_286_a2
E. P. Golubeva. On the class numbers of indefinite binary quadratic forms with discriminant~$dp^2$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 40-47. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a2/