On the Pellian equation
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 36-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\varepsilon(d)$ be the least solution of the Pellian equation $x^2-dy^2=1$. It is proved that there exists a sequence of values of $d$ having a positive density and such that $\varepsilon(d)>d^{2-\delta}$, where $\delta$ is an arbitrary positive constant.
@article{ZNSL_2002_286_a1,
author = {E. P. Golubeva},
title = {On the {Pellian} equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {36--39},
publisher = {mathdoc},
volume = {286},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/}
}
E. P. Golubeva. On the Pellian equation. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 36-39. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/