On the Pellian equation
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 36-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\varepsilon(d)$ be the least solution of the Pellian equation $x^2-dy^2=1$. It is proved that there exists a sequence of values of $d$ having a positive density and such that $\varepsilon(d)>d^{2-\delta}$, where $\delta$ is an arbitrary positive constant.
@article{ZNSL_2002_286_a1,
     author = {E. P. Golubeva},
     title = {On the {Pellian} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {36--39},
     publisher = {mathdoc},
     volume = {286},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/}
}
TY  - JOUR
AU  - E. P. Golubeva
TI  - On the Pellian equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2002
SP  - 36
EP  - 39
VL  - 286
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/
LA  - ru
ID  - ZNSL_2002_286_a1
ER  - 
%0 Journal Article
%A E. P. Golubeva
%T On the Pellian equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2002
%P 36-39
%V 286
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/
%G ru
%F ZNSL_2002_286_a1
E. P. Golubeva. On the Pellian equation. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 18, Tome 286 (2002), pp. 36-39. http://geodesic.mathdoc.fr/item/ZNSL_2002_286_a1/