On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 15-32
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of determination of the parameters (functions) $\varepsilon$, $\mu$ of the Maxwell dynamical system
\begin{align*}
\varepsilon E_t=\operatorname{rot}H, \quad \mu H_t=-\operatorname{rot}E \quad\text{в}\quad \Omega\times(0,T);
\\
|_{t=0}=0, \quad H|_{t=0}=0 \quad\text{в}\quad \Omega;
\\
{\tan}=f \quad\text{на}\quad \partial\Omega\times[0,T]
\end{align*}
(tan is the tangent component; $E=E^f(x,t)$, $H=H^f(x,t)$ is the solution) through the response operator $R^T\colon f\to\nu\times H^f|_{\partial\Omega\times[0,T]}$ ($\nu$ is normal).
The parameters determine the velocity $c=(\varepsilon\mu)^{-\frac12}$, the $c$-metric $ds^2=c^{-2}|dx|^2$, and the time $T_*=\max\limits_\Omega\operatorname{dist}_c(\cdot,\partial\Omega)$. We show that, for any fixed $T>T_*$, the operator $R^{2T}$ determines $\varepsilon,\mu$ in $\Omega$ uniquely.
@article{ZNSL_2002_285_a1,
author = {M. I. Belishev and V. M. Isakov},
title = {On uniqueness of recovering the parameters of the {Maxwell} system via dynamical boundary data},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--32},
publisher = {mathdoc},
volume = {285},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a1/}
}
TY - JOUR AU - M. I. Belishev AU - V. M. Isakov TI - On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data JO - Zapiski Nauchnykh Seminarov POMI PY - 2002 SP - 15 EP - 32 VL - 285 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a1/ LA - ru ID - ZNSL_2002_285_a1 ER -
M. I. Belishev; V. M. Isakov. On uniqueness of recovering the parameters of the Maxwell system via dynamical boundary data. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 31, Tome 285 (2002), pp. 15-32. http://geodesic.mathdoc.fr/item/ZNSL_2002_285_a1/