Some algebraic methods for calculation of the number of colorings of a~graph
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 193-205

Voir la notice de l'article provenant de la source Math-Net.Ru

With an arbitrary graph $G$ having $n$ vertices and $m$ edges, and with an arbitrary natural number $p$, we associate in a natural way a polynomial $R(x_1,\dots,x_2)$ with integer coefficients such that the number of colorings of the vertices of the graph $G$ in $p$ colors is equal to $p^{m-n}R(0,\dots,0)$. Also with an arbitrary maximal plannar graph $G$ we associate several polynomials with integer coefficients such that the number of colorings of the edges of the graph $G$ in 3 colors can be calculated in a several ways from the coefficients of each of these polynomials.
@article{ZNSL_2001_283_a12,
     author = {Yu. V. Matiyasevich},
     title = {Some algebraic methods for calculation of the number of colorings of a~graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {283},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a12/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - Some algebraic methods for calculation of the number of colorings of a~graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 193
EP  - 205
VL  - 283
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a12/
LA  - ru
ID  - ZNSL_2001_283_a12
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T Some algebraic methods for calculation of the number of colorings of a~graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 193-205
%V 283
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a12/
%G ru
%F ZNSL_2001_283_a12
Yu. V. Matiyasevich. Some algebraic methods for calculation of the number of colorings of a~graph. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part VI, Tome 283 (2001), pp. 193-205. http://geodesic.mathdoc.fr/item/ZNSL_2001_283_a12/