Symmetric sextics and auxiliary conics
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 154-167
Cet article a éte moissonné depuis la source Math-Net.Ru
Rigid isotopy classes of nonsingular curves of degree 6 in $\mathbb RP^2$ are considered. The previously-known list of all the classes containing symmetric curves is obtained by elementary means. The proof of the fact that a curve in a given rigid isotopy class cannot be symmetric involves studing the position of such a curve with respect to auxuliary conics.
@article{ZNSL_2001_279_a8,
author = {V. S. Itenberg and I. V. Itenberg},
title = {Symmetric sextics and auxiliary conics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {154--167},
year = {2001},
volume = {279},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/}
}
V. S. Itenberg; I. V. Itenberg. Symmetric sextics and auxiliary conics. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 154-167. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/