Symmetric sextics and auxiliary conics
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 154-167

Voir la notice de l'article provenant de la source Math-Net.Ru

Rigid isotopy classes of nonsingular curves of degree 6 in $\mathbb RP^2$ are considered. The previously-known list of all the classes containing symmetric curves is obtained by elementary means. The proof of the fact that a curve in a given rigid isotopy class cannot be symmetric involves studing the position of such a curve with respect to auxuliary conics.
@article{ZNSL_2001_279_a8,
     author = {V. S. Itenberg and I. V. Itenberg},
     title = {Symmetric sextics and auxiliary conics},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--167},
     publisher = {mathdoc},
     volume = {279},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/}
}
TY  - JOUR
AU  - V. S. Itenberg
AU  - I. V. Itenberg
TI  - Symmetric sextics and auxiliary conics
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2001
SP  - 154
EP  - 167
VL  - 279
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/
LA  - ru
ID  - ZNSL_2001_279_a8
ER  - 
%0 Journal Article
%A V. S. Itenberg
%A I. V. Itenberg
%T Symmetric sextics and auxiliary conics
%J Zapiski Nauchnykh Seminarov POMI
%D 2001
%P 154-167
%V 279
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/
%G ru
%F ZNSL_2001_279_a8
V. S. Itenberg; I. V. Itenberg. Symmetric sextics and auxiliary conics. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 6, Tome 279 (2001), pp. 154-167. http://geodesic.mathdoc.fr/item/ZNSL_2001_279_a8/