A conjugacy theorem for subgroups of $\mathrm{SL}_n$ containing the group of diagonal matrices
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 177-185

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative local ring. It is proved that if $n\ge3$ and the residue field of $R$ contains at least $3n+2$ elements, then the subgroup of diagonal matrices in the special linear group of degree $n$ over $R$ is pronormal. For semilocal rings with the same restrictions on residue fields this subgroup is paranormal.
@article{ZNSL_2000_272_a8,
     author = {A. E. Egorov and A. A. Panin},
     title = {A conjugacy theorem for subgroups of $\mathrm{SL}_n$ containing the group of diagonal matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--185},
     publisher = {mathdoc},
     volume = {272},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a8/}
}
TY  - JOUR
AU  - A. E. Egorov
AU  - A. A. Panin
TI  - A conjugacy theorem for subgroups of $\mathrm{SL}_n$ containing the group of diagonal matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 177
EP  - 185
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a8/
LA  - ru
ID  - ZNSL_2000_272_a8
ER  - 
%0 Journal Article
%A A. E. Egorov
%A A. A. Panin
%T A conjugacy theorem for subgroups of $\mathrm{SL}_n$ containing the group of diagonal matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 177-185
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a8/
%G ru
%F ZNSL_2000_272_a8
A. E. Egorov; A. A. Panin. A conjugacy theorem for subgroups of $\mathrm{SL}_n$ containing the group of diagonal matrices. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 7, Tome 272 (2000), pp. 177-185. http://geodesic.mathdoc.fr/item/ZNSL_2000_272_a8/