Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 63-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Nonlinear elliptic systems with q-growth are considered. It is assumed that additional nonlinear terms of the systems have $q$-growth in the gradient, $q>2$. For Dirichlet and Neumann boundary-value problems we study the regularity of weak bounded solutions in the vicinity of the boundary.
In the case of small dimensions $(n\le q+2)$, the Hölder continuity or partial Hölder continuity of the solutions up to the boundary is proved. In a previous article the author studied the same problem for $q=2$.
@article{ZNSL_2000_271_a4,
author = {A. A. Arkhipova},
title = {Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--82},
publisher = {mathdoc},
volume = {271},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/}
}
TY - JOUR AU - A. A. Arkhipova TI - Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 63 EP - 82 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/ LA - en ID - ZNSL_2000_271_a4 ER -
%0 Journal Article %A A. A. Arkhipova %T Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 63-82 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/ %G en %F ZNSL_2000_271_a4
A. A. Arkhipova. Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 63-82. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/