Partial regularity up to the boundary of weak solutions of elliptic systems with nonlinearity $\bold q$~greater than two
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 63-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear elliptic systems with q-growth are considered. It is assumed that additional nonlinear terms of the systems have $q$-growth in the gradient, $q>2$. For Dirichlet and Neumann boundary-value problems we study the regularity of weak bounded solutions in the vicinity of the boundary. In the case of small dimensions $(n\le q+2)$, the Hölder continuity or partial Hölder continuity of the solutions up to the boundary is proved. In a previous article the author studied the same problem for $q=2$.
@article{ZNSL_2000_271_a4,
     author = {A. A. Arkhipova},
     title = {Partial regularity up to the boundary of weak solutions  of elliptic systems with nonlinearity $\bold q$~greater than two},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--82},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - Partial regularity up to the boundary of weak solutions  of elliptic systems with nonlinearity $\bold q$~greater than two
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 63
EP  - 82
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/
LA  - en
ID  - ZNSL_2000_271_a4
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T Partial regularity up to the boundary of weak solutions  of elliptic systems with nonlinearity $\bold q$~greater than two
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 63-82
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/
%G en
%F ZNSL_2000_271_a4
A. A. Arkhipova. Partial regularity up to the boundary of weak solutions  of elliptic systems with nonlinearity $\bold q$~greater than two. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 63-82. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a4/