Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 276-312
Voir la notice de l'article provenant de la source Math-Net.Ru
A two-dimensional magnetic periodic Schrödinger operator with variable metric is considered. Electric potential is suggested to be a distribution formally given by the expression $\frac{d\nu}{d\bold x}$,
where $d\nu$ is a periodic measure with locally finite variation. We assume that the perturbation generated by electric potential is strongly subordinate (in the sense of forms) to the free operator. Under this natural assumption, we prove the absolute continuity of the spectrum of the Schrödinger operator.
@article{ZNSL_2000_271_a15,
author = {R. G. Shterenberg},
title = {Absolute continuity of a two-dimensional magnetic periodic {Schr\"odinger} operator with measure derivative like potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {276--312},
publisher = {mathdoc},
volume = {271},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/}
}
TY - JOUR AU - R. G. Shterenberg TI - Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 276 EP - 312 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/ LA - ru ID - ZNSL_2000_271_a15 ER -
%0 Journal Article %A R. G. Shterenberg %T Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 276-312 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/ %G ru %F ZNSL_2000_271_a15
R. G. Shterenberg. Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 276-312. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/