Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 276-312

Voir la notice de l'article provenant de la source Math-Net.Ru

A two-dimensional magnetic periodic Schrödinger operator with variable metric is considered. Electric potential is suggested to be a distribution formally given by the expression $\frac{d\nu}{d\bold x}$, where $d\nu$ is a periodic measure with locally finite variation. We assume that the perturbation generated by electric potential is strongly subordinate (in the sense of forms) to the free operator. Under this natural assumption, we prove the absolute continuity of the spectrum of the Schrödinger operator.
@article{ZNSL_2000_271_a15,
     author = {R. G. Shterenberg},
     title = {Absolute continuity of a two-dimensional magnetic periodic {Schr\"odinger} operator with measure derivative like potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {276--312},
     publisher = {mathdoc},
     volume = {271},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/}
}
TY  - JOUR
AU  - R. G. Shterenberg
TI  - Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 276
EP  - 312
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/
LA  - ru
ID  - ZNSL_2000_271_a15
ER  - 
%0 Journal Article
%A R. G. Shterenberg
%T Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 276-312
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/
%G ru
%F ZNSL_2000_271_a15
R. G. Shterenberg. Absolute continuity of a two-dimensional magnetic periodic Schr\"odinger operator with measure derivative like potential. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 31, Tome 271 (2000), pp. 276-312. http://geodesic.mathdoc.fr/item/ZNSL_2000_271_a15/