Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 103-123

Voir la notice de l'article provenant de la source Math-Net.Ru

Inperpolation theory is used to develop a general pattern for proving extension theorems mentioned in the title. In the case where the range space $G$ is a $w^*$-closed subspace of $L^\infty$ or $H^\infty$ with reflexive annihilator $F$, a necessary and sufficient condition on $G$ is found for such an extension to be always possible. Specifically, $F$ must be Hilbertian and become complemented in $L^p$ $(1$ after a suitable change of density.
@article{ZNSL_2000_270_a5,
     author = {S. V. Kislyakov},
     title = {Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--123},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 103
EP  - 123
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/
LA  - ru
ID  - ZNSL_2000_270_a5
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 103-123
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/
%G ru
%F ZNSL_2000_270_a5
S. V. Kislyakov. Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 103-123. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/