Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 103-123
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Inperpolation theory is used to develop a general pattern for proving extension theorems mentioned in the title. In the case where the range space $G$ is a $w^*$-closed subspace of $L^\infty$ or $H^\infty$ with reflexive annihilator $F$, a necessary and sufficient condition on $G$ is found for such an extension to be always possible. Specifically, $F$ must be Hilbertian and become complemented in $L^p$ $(1$ after a suitable change of density.
			
            
            
            
          
        
      @article{ZNSL_2000_270_a5,
     author = {S. V. Kislyakov},
     title = {Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--123},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/}
}
                      
                      
                    S. V. Kislyakov. Extension of operators defined on reflexive subspaces of~$L^1$ and $L^1/H^1$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 103-123. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a5/
