An example of a fast decaying $(p,A)$-lacunary function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 350-363

Voir la notice de l'article provenant de la source Math-Net.Ru

A function $f(z)=\sum^\infty_{k=0}a_kz^{n_k}$ analytic in the unit disc is said be $(p,A)$-lacunary if $n_k\ge Ak^p$, $1$, $A>0$ for all $k\ge0$. For $1$, $A>0$, a $(p,A)$-lacunary function $f_{1,p,A}(z)$ is constructed that decays as $x\to1-0$ almost optimally.
@article{ZNSL_2000_270_a18,
     author = {N. A. Shirokov},
     title = {An example of a fast decaying $(p,A)$-lacunary function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {350--363},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a18/}
}
TY  - JOUR
AU  - N. A. Shirokov
TI  - An example of a fast decaying $(p,A)$-lacunary function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 350
EP  - 363
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a18/
LA  - ru
ID  - ZNSL_2000_270_a18
ER  - 
%0 Journal Article
%A N. A. Shirokov
%T An example of a fast decaying $(p,A)$-lacunary function
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 350-363
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a18/
%G ru
%F ZNSL_2000_270_a18
N. A. Shirokov. An example of a fast decaying $(p,A)$-lacunary function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 350-363. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a18/