The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 317-324
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ the inner gap in the spectrum of the operator $A$; let $B(t)=A+tW^*W$, where the operator $W(A-iI)^{-1}$ is not necessarily bounded. Conditions are obtained that guarantee that the spectrum of $B(t)$ in $(\alpha,\beta)$ be discrete. Let $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ be the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$. The asymptotics $N(\lambda,A,W,\tau)$,
$\tau\to+\infty$, is obtained in terms of the spectral asymptotics of a certain selfadjoint compact operator.
@article{ZNSL_2000_270_a15,
author = {V. A. Sloushch},
title = {The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {317--324},
publisher = {mathdoc},
volume = {270},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/}
}
TY - JOUR AU - V. A. Sloushch TI - The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 317 EP - 324 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/ LA - ru ID - ZNSL_2000_270_a15 ER -
%0 Journal Article %A V. A. Sloushch %T The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations %J Zapiski Nauchnykh Seminarov POMI %D 2000 %P 317-324 %V 270 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/ %G ru %F ZNSL_2000_270_a15
V. A. Sloushch. The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 317-324. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/