The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 317-324

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a selfadjoint operator, $(\alpha,\beta)$ the inner gap in the spectrum of the operator $A$; let $B(t)=A+tW^*W$, where the operator $W(A-iI)^{-1}$ is not necessarily bounded. Conditions are obtained that guarantee that the spectrum of $B(t)$ in $(\alpha,\beta)$ be discrete. Let $N(\lambda,A,W,\tau)$, $\lambda\in(\alpha,\beta)$, $\tau>0$ be the number of eigenvalues of the operator $B(t)$ having passed the point $\lambda\in(\alpha,\beta)$ as $t$ increases from 0 to $\tau$. The asymptotics $N(\lambda,A,W,\tau)$, $\tau\to+\infty$, is obtained in terms of the spectral asymptotics of a certain selfadjoint compact operator.
@article{ZNSL_2000_270_a15,
     author = {V. A. Sloushch},
     title = {The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {317--324},
     publisher = {mathdoc},
     volume = {270},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/}
}
TY  - JOUR
AU  - V. A. Sloushch
TI  - The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 317
EP  - 324
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/
LA  - ru
ID  - ZNSL_2000_270_a15
ER  - 
%0 Journal Article
%A V. A. Sloushch
%T The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 317-324
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/
%G ru
%F ZNSL_2000_270_a15
V. A. Sloushch. The discrete spectrum asymptotics with large coupling constant in the case of strong nonnegative perturbations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 28, Tome 270 (2000), pp. 317-324. http://geodesic.mathdoc.fr/item/ZNSL_2000_270_a15/