Orientations of spines of homology balls
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 156-162

Voir la notice de l'article provenant de la source Math-Net.Ru

Oriented special spines of 3-manifolds are studied. (Orientation is an additional structure on the spine, and each 3-manifold possesses a special spine with such a structure.) The moves $M^{\pm1}$ and $L^{\pm1}$ of special spines, which do not change the manifold, are well known. We prove that $M^{+1}$ and $L^{+1}$ preserve orientability of a spine, while $M^{-1}$ and $L^{-1}$ do not. For spines of homology balls, a class of moves is described which allow one to pass from a given orientation of a spine to any other orientation of the spine.
@article{ZNSL_2000_267_a10,
     author = {A. Yu. Makovetskii},
     title = {Orientations of spines of homology balls},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--162},
     publisher = {mathdoc},
     volume = {267},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a10/}
}
TY  - JOUR
AU  - A. Yu. Makovetskii
TI  - Orientations of spines of homology balls
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 156
EP  - 162
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a10/
LA  - ru
ID  - ZNSL_2000_267_a10
ER  - 
%0 Journal Article
%A A. Yu. Makovetskii
%T Orientations of spines of homology balls
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 156-162
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a10/
%G ru
%F ZNSL_2000_267_a10
A. Yu. Makovetskii. Orientations of spines of homology balls. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 5, Tome 267 (2000), pp. 156-162. http://geodesic.mathdoc.fr/item/ZNSL_2000_267_a10/