Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 107-130
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we find a method for constructing solid torus (or: $\boldsymbol B$-type) link invariants by means of extension of the Kauffman bracket for such links. This method can be viewed as the combination of the ideas proposed in [5, 7] and [8] with $\boldsymbol B$-type braid group theoretic approach to solid torus links which is given in [18]. Such method is shown to be compatible with skein relations of $\boldsymbol B$–type and leads to state sum expression for link invariant (in the case of the special diagrams).
			
            
            
            
          
        
      @article{ZNSL_2000_266_a7,
     author = {P. P. Kulish and A. M. Nikitin},
     title = {Invariants of $\boldsymbol B${-Type} {Links} via an {Extension} of the {Kauffman} {Bracket}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--130},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/}
}
                      
                      
                    TY - JOUR AU - P. P. Kulish AU - A. M. Nikitin TI - Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 107 EP - 130 VL - 266 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/ LA - en ID - ZNSL_2000_266_a7 ER -
P. P. Kulish; A. M. Nikitin. Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 107-130. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/