Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 107-130

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find a method for constructing solid torus (or: $\boldsymbol B$-type) link invariants by means of extension of the Kauffman bracket for such links. This method can be viewed as the combination of the ideas proposed in [5, 7] and [8] with $\boldsymbol B$-type braid group theoretic approach to solid torus links which is given in [18]. Such method is shown to be compatible with skein relations of $\boldsymbol B$–type and leads to state sum expression for link invariant (in the case of the special diagrams).
@article{ZNSL_2000_266_a7,
     author = {P. P. Kulish and A. M. Nikitin},
     title = {Invariants of $\boldsymbol B${-Type} {Links} via an {Extension} of the {Kauffman} {Bracket}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--130},
     publisher = {mathdoc},
     volume = {266},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - A. M. Nikitin
TI  - Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2000
SP  - 107
EP  - 130
VL  - 266
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/
LA  - en
ID  - ZNSL_2000_266_a7
ER  - 
%0 Journal Article
%A P. P. Kulish
%A A. M. Nikitin
%T Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket
%J Zapiski Nauchnykh Seminarov POMI
%D 2000
%P 107-130
%V 266
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/
%G en
%F ZNSL_2000_266_a7
P. P. Kulish; A. M. Nikitin. Invariants of $\boldsymbol B$-Type Links via an Extension of the Kauffman Bracket. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part V, Tome 266 (2000), pp. 107-130. http://geodesic.mathdoc.fr/item/ZNSL_2000_266_a7/