The effects connected with coincidence of velocities in the two-velocities dynamical system
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 44-65
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the system
\begin{align*}
\rho u_{tt}-u_{xx}+Vu=0,\quad x>0,\quad t>0;\\
|_{t=0}=u_t|_{t=0}=0;\\
|_{x=0} = f,
\end{align*}
where $\rho=\rho(x)$ and $V=V(x)$ are $2\times2$-matrix functions; $\rho=\operatorname{diag}\{\rho_1,\rho_2\},\rho_{\alpha}>0$; $f$ is a boundary control; $u=u(x,t)$ is the solution. The singularities of the fundamental solution corresponding to the controls $\binom{\delta}0$ and $\binom0{\delta}$ ($\delta=\delta(t)$ is the Dirac $\delta$-function) are under investigation. In the case of $\rho_1(x)\ne\rho_2(x)$ the singularities of the fundamental solution are described in terms of the standard scale $\delta,\int\delta,
\iint\delta,\ldots$. In the presence of points $x=x_*:\rho_1(x_*)=\rho_2(x_*)$ an interesting effect occurs: the singularities of intermediate (fractional) orders appear.
@article{ZNSL_2000_264_a3,
author = {M. I. Belishev and A. V. Zurov},
title = {The effects connected with coincidence of velocities in the two-velocities dynamical system},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {44--65},
publisher = {mathdoc},
volume = {264},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a3/}
}
TY - JOUR AU - M. I. Belishev AU - A. V. Zurov TI - The effects connected with coincidence of velocities in the two-velocities dynamical system JO - Zapiski Nauchnykh Seminarov POMI PY - 2000 SP - 44 EP - 65 VL - 264 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a3/ LA - ru ID - ZNSL_2000_264_a3 ER -
M. I. Belishev; A. V. Zurov. The effects connected with coincidence of velocities in the two-velocities dynamical system. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 29, Tome 264 (2000), pp. 44-65. http://geodesic.mathdoc.fr/item/ZNSL_2000_264_a3/