Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 147-171
Voir la notice de l'article provenant de la source Math-Net.Ru
Hamburger's power moment problem (shortly HPMP) that has a solution with infinitely many points of increase is shown to be the problem of finding all spectral functions for some canonical system of the linear differential
equations of phase dimension 2 and with Hamiltonian of special class. A rule for construction of this Hamiltonian
using the data of HPMP is given. In this connection the Hamburger criterion for the uniqueness of a solution of HPMP acquires a “natural form”, and some results of the classical HPMP theory receive simple proofs.
@article{ZNSL_1999_262_a6,
author = {I. S. Kats},
title = {Inclusion of {Hamburger's} power moment problem in the spectral theory of the canonical systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--171},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/}
}
TY - JOUR AU - I. S. Kats TI - Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 147 EP - 171 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/ LA - ru ID - ZNSL_1999_262_a6 ER -
I. S. Kats. Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 147-171. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/