Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 147-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Hamburger's power moment problem (shortly HPMP) that has a solution with infinitely many points of increase is shown to be the problem of finding all spectral functions for some canonical system of the linear differential equations of phase dimension 2 and with Hamiltonian of special class. A rule for construction of this Hamiltonian using the data of HPMP is given. In this connection the Hamburger criterion for the uniqueness of a solution of HPMP acquires a “natural form”, and some results of the classical HPMP theory receive simple proofs.
@article{ZNSL_1999_262_a6,
     author = {I. S. Kats},
     title = {Inclusion of {Hamburger's} power moment problem in the spectral theory of the canonical systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--171},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/}
}
TY  - JOUR
AU  - I. S. Kats
TI  - Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 147
EP  - 171
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/
LA  - ru
ID  - ZNSL_1999_262_a6
ER  - 
%0 Journal Article
%A I. S. Kats
%T Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 147-171
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/
%G ru
%F ZNSL_1999_262_a6
I. S. Kats. Inclusion of Hamburger's power moment problem in the spectral theory of the canonical systems. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 147-171. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a6/