Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 90-126
Voir la notice de l'article provenant de la source Math-Net.Ru
For two families of functions generated by a system of $n$ scalar Muckenhoupt weights, criteria are obtained for being unconditional basic sequences. From the point of view of the spectral operator theory, the problem is reduced to analyzing the structure of $n$-dimensional perturbations of the integration operator. With the help of weighted estimates for the Hilbert transform in the spaces of vector-functions, an operator is constructed that
transforms the functions of the given families into vector-valued rational functions. The concept of Carleson
series is used for solving the problem of being an unconditional basis.
@article{ZNSL_1999_262_a3,
author = {G. M. Gubreev and E. I. Olefir},
title = {Unconditional bases, the matrix {Muckenhoupt} condition, and {Carleson} series in the spectrum},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {90--126},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/}
}
TY - JOUR AU - G. M. Gubreev AU - E. I. Olefir TI - Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 90 EP - 126 VL - 262 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/ LA - ru ID - ZNSL_1999_262_a3 ER -
G. M. Gubreev; E. I. Olefir. Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 90-126. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/