Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 90-126

Voir la notice de l'article provenant de la source Math-Net.Ru

For two families of functions generated by a system of $n$ scalar Muckenhoupt weights, criteria are obtained for being unconditional basic sequences. From the point of view of the spectral operator theory, the problem is reduced to analyzing the structure of $n$-dimensional perturbations of the integration operator. With the help of weighted estimates for the Hilbert transform in the spaces of vector-functions, an operator is constructed that transforms the functions of the given families into vector-valued rational functions. The concept of Carleson series is used for solving the problem of being an unconditional basis.
@article{ZNSL_1999_262_a3,
     author = {G. M. Gubreev and E. I. Olefir},
     title = {Unconditional bases, the matrix {Muckenhoupt} condition, and {Carleson} series in the spectrum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {90--126},
     publisher = {mathdoc},
     volume = {262},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - E. I. Olefir
TI  - Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 90
EP  - 126
VL  - 262
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/
LA  - ru
ID  - ZNSL_1999_262_a3
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A E. I. Olefir
%T Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 90-126
%V 262
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/
%G ru
%F ZNSL_1999_262_a3
G. M. Gubreev; E. I. Olefir. Unconditional bases, the matrix Muckenhoupt condition, and Carleson series in the spectrum. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 90-126. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a3/