On a system of step functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 49-70
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well-known that the Riemann hypothesis is equivalent to the assertion that the identity function belongs to the linear span in $L^2(0,1)$ of the following function set
\begin{equation}
\left[\frac\alpha x\right]-\alpha\left[\frac1x\right], \qquad 0\alpha1.
\tag{1}
\end{equation}
A step is presented in describing the set of all idempotents representable as a finite sum of functions of the form (1).
@article{ZNSL_1999_262_a1,
author = {V. I. Vasyunin},
title = {On a system of step functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--70},
publisher = {mathdoc},
volume = {262},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a1/}
}
V. I. Vasyunin. On a system of step functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 27, Tome 262 (1999), pp. 49-70. http://geodesic.mathdoc.fr/item/ZNSL_1999_262_a1/