Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 121-128

Voir la notice de l'article provenant de la source Math-Net.Ru

Some estimates of the rates of convergence in the ergodic theorem for actions of groups $\mathbb Z^d$ are given. Besides, martingale–ergodic theorem for $\mathbb Z^d$ is proved. This theorem may be considered as an ergodic theorem in which the exact initial coordinates of phase space's points are gradually forgotten.
@article{ZNSL_1999_256_a8,
     author = {A. G. Kachurovskii},
     title = {Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/}
}
TY  - JOUR
AU  - A. G. Kachurovskii
TI  - Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 121
EP  - 128
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/
LA  - ru
ID  - ZNSL_1999_256_a8
ER  - 
%0 Journal Article
%A A. G. Kachurovskii
%T Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 121-128
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/
%G ru
%F ZNSL_1999_256_a8
A. G. Kachurovskii. Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 121-128. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/