@article{ZNSL_1999_256_a8,
author = {A. G. Kachurovskii},
title = {Convergence of averages in the ergodic theorem for groups~$\mathbb Z^d$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {121--128},
year = {1999},
volume = {256},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/}
}
A. G. Kachurovskii. Convergence of averages in the ergodic theorem for groups $\mathbb Z^d$. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 121-128. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a8/
[1] U. Krengel, Ergodic theorems, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl
[2] A. G. Kachurovskii, “Skorosti skhodimosti v ergodicheskikh teoremakh”, Usp. Mat. Nauk, 51 (1996), 73–124 | MR | Zbl
[3] A. M. Vershik, A. G. Kachurovskii, Skorosti skhodimosti v ergodicheskikh teoremakh dlya lokalno konechnykh grupp i obraschennye martingaly, Preprint POMI 2/1998. 6 s. | Zbl
[4] A. G. Kachurovskii, “Martingalno-ergodicheskaya teorema”, Mat. Zametki, 64 (1998), 311–314 | MR | Zbl
[5] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965
[6] M. I. Dyachenko, “Nekotorye problemy teorii kratnykh trigonometricheskikh ryadov”, Usp. Mat. Nauk, 47 (1992), 97–162 | MR | Zbl
[7] A. N. Shiryaev, Veroyatnost, Nauka, M., 1989 | MR
[8] J. Neveu, Discrete parameter martingales, North Holland Publishing Co., Amsterdam, 1975 | MR | Zbl
[9] M. Loev, Teoriya veroyatnostei, IL, M., 1962 | MR