Strong version of the basic deciding algorithm for the existential theory of real fields
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 168-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $U$ be a real algebraic variety in $n$-dimensional affine space which is a set of all zeroes of a family of polynomials of degrees less than $d$. In the case when $U$ is bounded (it is the main case) an algorithm of 
polynomial complexity is described for constructing a subset of $U$ with the number of elements bounded from above by $d^n$ which for every $s$ has a non–empty intersection with every cycle with coefficients from 
${\mathbb Z}/2{\mathbb Z}$ of dimension $s$ of the closure of the set of smooth points of dimension $s$ of $U$.
			
            
            
            
          
        
      @article{ZNSL_1999_256_a11,
     author = {A. L. Chistov},
     title = {Strong version of the basic deciding algorithm for the existential theory of real fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {168--211},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a11/}
}
                      
                      
                    TY - JOUR AU - A. L. Chistov TI - Strong version of the basic deciding algorithm for the existential theory of real fields JO - Zapiski Nauchnykh Seminarov POMI PY - 1999 SP - 168 EP - 211 VL - 256 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a11/ LA - ru ID - ZNSL_1999_256_a11 ER -
A. L. Chistov. Strong version of the basic deciding algorithm for the existential theory of real fields. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 168-211. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a11/