Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 145-167

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper aims on two major observations. The first is that all 54 series of classical symmetric spaces admit simple uniform realizations. Namely, a point of a symmetric space is represented by a pair of complementary linear subspaces $V_1$, $V_2$ in $\mathbb R^k$, $\mathbb C^k$ or $\mathbb H^k$, subject to simple conditions (subspaces may be isotropic, or orthogonal, or rigged with an operator permuting $V_1$ and $V_2$). This observation allows one to work with arbitrary classical symmetric spaces by applying simple elementary methods. The second observation is that there always exist an open embedding of a classical symmetric space into a Grassmanian.
@article{ZNSL_1999_256_a10,
     author = {Yu. A. Neretin},
     title = {Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into {Grassmanians}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {145--167},
     publisher = {mathdoc},
     volume = {256},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1999
SP  - 145
EP  - 167
VL  - 256
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/
LA  - ru
ID  - ZNSL_1999_256_a10
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians
%J Zapiski Nauchnykh Seminarov POMI
%D 1999
%P 145-167
%V 256
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/
%G ru
%F ZNSL_1999_256_a10
Yu. A. Neretin. Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 145-167. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/