Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 145-167
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper aims on two major observations. The first is that all 54 series of classical symmetric spaces admit simple uniform realizations. Namely, a point of a symmetric space is represented by a pair of complementary linear subspaces $V_1$, $V_2$ in $\mathbb R^k$, $\mathbb C^k$ or $\mathbb H^k$, subject to simple conditions (subspaces may be isotropic, or orthogonal, or rigged with an operator permuting $V_1$ and $V_2$). This observation allows one to work with arbitrary classical symmetric spaces by applying simple elementary methods. The second observation is that there always exist an open embedding of a classical symmetric space into a Grassmanian.
@article{ZNSL_1999_256_a10,
author = {Yu. A. Neretin},
title = {Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into {Grassmanians}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {145--167},
year = {1999},
volume = {256},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/}
}
Yu. A. Neretin. Pseudo-Riemannian symmetric spaces: uniform realizations, and open embeddings into Grassmanians. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part III, Tome 256 (1999), pp. 145-167. http://geodesic.mathdoc.fr/item/ZNSL_1999_256_a10/