Operators close to unitary and their function models. 1
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 82-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct a function model for an operator in Hilbert space, which is close to an isometry. The model operator acts on a space of functions meromorphic inside and outside the unit disk. The functions from the space may be regarded as a generalization of Cauchy integrals of distributions, which gives a base for spectral analysis. The first part included in this issue contains a theorem on the existence of such a model for one-dimensional perturbations of a unitary operator.
@article{ZNSL_1998_255_a4,
     author = {V. V. Kapustin},
     title = {Operators close to unitary and their function models.~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--91},
     year = {1998},
     volume = {255},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Operators close to unitary and their function models. 1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 82
EP  - 91
VL  - 255
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/
LA  - ru
ID  - ZNSL_1998_255_a4
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Operators close to unitary and their function models. 1
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 82-91
%V 255
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/
%G ru
%F ZNSL_1998_255_a4
V. V. Kapustin. Operators close to unitary and their function models. 1. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 82-91. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/