Operators close to unitary and their function models.~1
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 82-91

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a function model for an operator in Hilbert space, which is close to an isometry. The model operator acts on a space of functions meromorphic inside and outside the unit disk. The functions from the space may be regarded as a generalization of Cauchy integrals of distributions, which gives a base for spectral analysis. The first part included in this issue contains a theorem on the existence of such a model for one-dimensional perturbations of a unitary operator.
@article{ZNSL_1998_255_a4,
     author = {V. V. Kapustin},
     title = {Operators close to unitary and their function models.~1},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--91},
     publisher = {mathdoc},
     volume = {255},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/}
}
TY  - JOUR
AU  - V. V. Kapustin
TI  - Operators close to unitary and their function models.~1
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 82
EP  - 91
VL  - 255
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/
LA  - ru
ID  - ZNSL_1998_255_a4
ER  - 
%0 Journal Article
%A V. V. Kapustin
%T Operators close to unitary and their function models.~1
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 82-91
%V 255
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/
%G ru
%F ZNSL_1998_255_a4
V. V. Kapustin. Operators close to unitary and their function models.~1. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 26, Tome 255 (1998), pp. 82-91. http://geodesic.mathdoc.fr/item/ZNSL_1998_255_a4/