Representations of integers belonging to subsequences of the positive integers by binary quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 165-191
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider positive-definite primitive binary quadratic forms of fundamental discriminant $d0$; $R$ is the genus and $C$ is the class of such forms. We obtain asymptotics for the sum of absolute values of the Fourier coefficients for the Hecke eigenforms of weight 1 and of dihedral type. In an earlier paper (Zap. Nauchn. Semin. POMI, 226 (1996)), the author showed that if $C\in R$, then almost all $R$-representable positive integers are $C$-representable. We extend this result to certain subsequences of $\mathbb N$ such as $\{a_n=p_n+l\}$, $\{a_n=n(n+1)\}$, etc. Finally, for certain genera $R$ with class number greater than one, we prove an asymptotics $(x\to\infty)$ for the sum
$$
\sum_{\substack{n\le x\\ r(n;C)>0}}\frac1{r(n;C)},
$$
where $C$ is a class in $R$ and $r(n;C)$ is the number of representations of a positive integer $n$ by the class $C$.
@article{ZNSL_1998_254_a10,
author = {O. M. Fomenko},
title = {Representations of integers belonging to subsequences of the positive integers by binary quadratic forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {165--191},
publisher = {mathdoc},
volume = {254},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a10/}
}
TY - JOUR AU - O. M. Fomenko TI - Representations of integers belonging to subsequences of the positive integers by binary quadratic forms JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 165 EP - 191 VL - 254 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a10/ LA - ru ID - ZNSL_1998_254_a10 ER -
O. M. Fomenko. Representations of integers belonging to subsequences of the positive integers by binary quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 15, Tome 254 (1998), pp. 165-191. http://geodesic.mathdoc.fr/item/ZNSL_1998_254_a10/