Description of a class of solids in~$\mathbb R^3$
Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 149-164

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q\subset\mathbb R^3$ be a compact convex solid such that for each parallel (not necessarily orthogonal) projection onto any plane no two antipodal faces of the solid are projected strictly inside the projection of all $Q$. Then $Q$ is either a cone with a convex base or a frustrum of a trihedral pyramid or a prism (possibly with nonparallel bases).
@article{ZNSL_1998_252_a13,
     author = {N. D. Lebedeva},
     title = {Description of a class of solids in~$\mathbb R^3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {149--164},
     publisher = {mathdoc},
     volume = {252},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a13/}
}
TY  - JOUR
AU  - N. D. Lebedeva
TI  - Description of a class of solids in~$\mathbb R^3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 149
EP  - 164
VL  - 252
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a13/
LA  - ru
ID  - ZNSL_1998_252_a13
ER  - 
%0 Journal Article
%A N. D. Lebedeva
%T Description of a class of solids in~$\mathbb R^3$
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 149-164
%V 252
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a13/
%G ru
%F ZNSL_1998_252_a13
N. D. Lebedeva. Description of a class of solids in~$\mathbb R^3$. Zapiski Nauchnykh Seminarov POMI, Geometry and topology. Part 3, Tome 252 (1998), pp. 149-164. http://geodesic.mathdoc.fr/item/ZNSL_1998_252_a13/