Induced representations of the one-dimensional quantum Galilei group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 33-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We apply the induced representation technique to study the one dimensional quantum Galilei group. After a brief sketch of the general theory, we develop the representation at an algebraic level. Then we prove
the existence of a quasi in invariant measure on the homogeneous space and the corresponding square integrable functions. The unitarity of the induced representations is first studied in the physically meaningful case of real quantum parameter, where the involution is not standard. The imaginary case, where $(\ast\circ S)^2=id$ exhibits a behaviour which is analogue to the classical one.
			
            
            
            
          
        
      @article{ZNSL_1998_251_a2,
     author = {F. Bonechi and R. Giachetti and E. Sorace and M. Tarlini},
     title = {Induced representations of the one-dimensional quantum {Galilei} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {251},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/}
}
                      
                      
                    TY - JOUR AU - F. Bonechi AU - R. Giachetti AU - E. Sorace AU - M. Tarlini TI - Induced representations of the one-dimensional quantum Galilei group JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 33 EP - 41 VL - 251 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/ LA - en ID - ZNSL_1998_251_a2 ER -
F. Bonechi; R. Giachetti; E. Sorace; M. Tarlini. Induced representations of the one-dimensional quantum Galilei group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/