Induced representations of the one-dimensional quantum Galilei group
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

We apply the induced representation technique to study the one dimensional quantum Galilei group. After a brief sketch of the general theory, we develop the representation at an algebraic level. Then we prove the existence of a quasi in invariant measure on the homogeneous space and the corresponding square integrable functions. The unitarity of the induced representations is first studied in the physically meaningful case of real quantum parameter, where the involution is not standard. The imaginary case, where $(\ast\circ S)^2=id$ exhibits a behaviour which is analogue to the classical one.
@article{ZNSL_1998_251_a2,
     author = {F. Bonechi and R. Giachetti and E. Sorace and M. Tarlini},
     title = {Induced representations of the one-dimensional quantum {Galilei} group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {251},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/}
}
TY  - JOUR
AU  - F. Bonechi
AU  - R. Giachetti
AU  - E. Sorace
AU  - M. Tarlini
TI  - Induced representations of the one-dimensional quantum Galilei group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1998
SP  - 33
EP  - 41
VL  - 251
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/
LA  - en
ID  - ZNSL_1998_251_a2
ER  - 
%0 Journal Article
%A F. Bonechi
%A R. Giachetti
%A E. Sorace
%A M. Tarlini
%T Induced representations of the one-dimensional quantum Galilei group
%J Zapiski Nauchnykh Seminarov POMI
%D 1998
%P 33-41
%V 251
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/
%G en
%F ZNSL_1998_251_a2
F. Bonechi; R. Giachetti; E. Sorace; M. Tarlini. Induced representations of the one-dimensional quantum Galilei group. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 15, Tome 251 (1998), pp. 33-41. http://geodesic.mathdoc.fr/item/ZNSL_1998_251_a2/