Visualization of waves in the Maxwell dynamical system (the BC-method)
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 49-61
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper develops an approach to the Inverse Problems using their relations to the Boundary Control Theory
(the BC-method). One of main tools of the approach is the so-called Amplitude Formula (AF) based upon the Geometrical Optics and properties of controllability of dynamical systems. The AF makes the waves propagating into a domain be visible for an external observer performing measurements at a boundary. In the paper a natural analog of the AF is obtained for a system governed by the Maxwell equations. As an auxilliary result, an approximate controllability of electric component of the system is established under some assumptions of geometrical character.
@article{ZNSL_1998_250_a3,
author = {M. I. Belishev and A. K. Glasman},
title = {Visualization of waves in the {Maxwell} dynamical system (the {BC-method)}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {49--61},
publisher = {mathdoc},
volume = {250},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a3/}
}
TY - JOUR AU - M. I. Belishev AU - A. K. Glasman TI - Visualization of waves in the Maxwell dynamical system (the BC-method) JO - Zapiski Nauchnykh Seminarov POMI PY - 1998 SP - 49 EP - 61 VL - 250 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a3/ LA - ru ID - ZNSL_1998_250_a3 ER -
M. I. Belishev; A. K. Glasman. Visualization of waves in the Maxwell dynamical system (the BC-method). Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 27, Tome 250 (1998), pp. 49-61. http://geodesic.mathdoc.fr/item/ZNSL_1998_250_a3/