Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 102-117

Voir la notice de l'article provenant de la source Math-Net.Ru

Pseudorelativistic Hamiltonian $$ G_{1/2}=\bigl((-i\nabla-\mathbf A)^2+I\bigr)^{1/2}+W, \qquad x\in\mathbb R^d, \quad d\ge 2, $$ is considered under wide conditions on potentials $\mathbf A(\mathbf x)$, $W(x)$. It is assumed that the real point $\lambda$ is regular for $G_{1/2}$. Let $G_{1/2}(\alpha)=G_{1/2}-\alpha V$, where $\alpha>0$, $V(x)\ge 0$, $V\in L_d(\mathbb R^d)$. Denote by $N(\lambda,\alpha)$ the number of eigenvalues of $G_{1/2}(t)$ that cross the point $\lambda$ as $t$ increases from 0 to $\alpha$. The Weyl type asymptotics for $N(\lambda,\alpha)$ as $\alpha\to\infty$ is obtained.
@article{ZNSL_1997_249_a5,
     author = {M. Sh. Birman and A. B. Pushnitskii},
     title = {Discrete spectrum in the gaps of perturbed pseudorelativistic {Hamiltonian}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {102--117},
     publisher = {mathdoc},
     volume = {249},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - A. B. Pushnitskii
TI  - Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 102
EP  - 117
VL  - 249
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/
LA  - ru
ID  - ZNSL_1997_249_a5
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A A. B. Pushnitskii
%T Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 102-117
%V 249
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/
%G ru
%F ZNSL_1997_249_a5
M. Sh. Birman; A. B. Pushnitskii. Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 102-117. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/