Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 102-117
Voir la notice de l'article provenant de la source Math-Net.Ru
Pseudorelativistic Hamiltonian
$$
G_{1/2}=\bigl((-i\nabla-\mathbf A)^2+I\bigr)^{1/2}+W, \qquad x\in\mathbb R^d, \quad d\ge 2,
$$
is considered under wide conditions on potentials $\mathbf A(\mathbf x)$, $W(x)$. It is assumed that the real point $\lambda$ is regular for $G_{1/2}$. Let $G_{1/2}(\alpha)=G_{1/2}-\alpha V$, where $\alpha>0$,
$V(x)\ge 0$, $V\in L_d(\mathbb R^d)$. Denote by $N(\lambda,\alpha)$ the number of eigenvalues of $G_{1/2}(t)$ that cross the point $\lambda$ as $t$ increases from 0 to $\alpha$. The Weyl type asymptotics for
$N(\lambda,\alpha)$ as $\alpha\to\infty$ is obtained.
@article{ZNSL_1997_249_a5,
author = {M. Sh. Birman and A. B. Pushnitskii},
title = {Discrete spectrum in the gaps of perturbed pseudorelativistic {Hamiltonian}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--117},
publisher = {mathdoc},
volume = {249},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/}
}
TY - JOUR AU - M. Sh. Birman AU - A. B. Pushnitskii TI - Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 102 EP - 117 VL - 249 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/ LA - ru ID - ZNSL_1997_249_a5 ER -
M. Sh. Birman; A. B. Pushnitskii. Discrete spectrum in the gaps of perturbed pseudorelativistic Hamiltonian. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 102-117. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a5/