On attractors for equations describing the flow of generalized Newtonian fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 256-293

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider initial-boundary value problems for equations \begin{gather*} \partial_t v+(\nabla v)v-\operatorname{div}\sigma=g-\nabla p, \quad \operatorname{div}v=0, \\ \sigma=\frac{\partial D}{\partial\varepsilon}(\varepsilon (v)), \quad v\big|_{t=0}=a, \end{gather*} describing the $2D$ flow of generalized Newtonian fluids under periodical boundary conditions. It is supposed that $D(\varepsilon)\sim|\varepsilon|^p$ for $|\varepsilon|\gg 1$ and $1$. Under some additional restrictions imposed on the vector-valued field $g$ and the dissipative potential $D$ existence of a global solution for initial data having the finite $L_2$-norm $(\|a\|_2+\infty$) is proved. If $\|\nabla a\|_2+\infty$ and $\frac32\le p2$, this solution is strong and unique. Strong solution exists and is unique for all $1$. The last result allows to define a semigroup of solution operators and to prove that it is of class I and possesses of a compact minimal global $\mathscr B$-attractor.
@article{ZNSL_1997_249_a12,
     author = {G. A. Seregin},
     title = {On attractors for equations describing the flow of generalized {Newtonian} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {256--293},
     publisher = {mathdoc},
     volume = {249},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - On attractors for equations describing the flow of generalized Newtonian fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 256
EP  - 293
VL  - 249
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/
LA  - ru
ID  - ZNSL_1997_249_a12
ER  - 
%0 Journal Article
%A G. A. Seregin
%T On attractors for equations describing the flow of generalized Newtonian fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 256-293
%V 249
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/
%G ru
%F ZNSL_1997_249_a12
G. A. Seregin. On attractors for equations describing the flow of generalized Newtonian fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 256-293. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/