On attractors for equations describing the flow of generalized Newtonian fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 256-293
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider initial-boundary value problems for equations
\begin{gather*}
\partial_t v+(\nabla v)v-\operatorname{div}\sigma=g-\nabla p, \quad \operatorname{div}v=0,
\\
\sigma=\frac{\partial D}{\partial\varepsilon}(\varepsilon (v)), \quad v\big|_{t=0}=a,
\end{gather*}
describing the $2D$ flow of generalized Newtonian fluids under periodical boundary conditions. It is supposed that $D(\varepsilon)\sim|\varepsilon|^p$ for $|\varepsilon|\gg 1$ and $1$. Under some additional restrictions imposed on the vector-valued field $g$ and the dissipative potential $D$ existence of a global solution for initial data having the finite $L_2$-norm $(\|a\|_2+\infty$) is proved. If $\|\nabla a\|_2+\infty$ and $\frac32\le p2$, this solution is strong and unique. Strong solution exists and is unique for all $1$. The last result allows to define a semigroup of solution operators and to prove that it is of class I and possesses of a compact minimal global $\mathscr B$-attractor.
@article{ZNSL_1997_249_a12,
author = {G. A. Seregin},
title = {On attractors for equations describing the flow of generalized {Newtonian} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {256--293},
publisher = {mathdoc},
volume = {249},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/}
}
G. A. Seregin. On attractors for equations describing the flow of generalized Newtonian fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 29, Tome 249 (1997), pp. 256-293. http://geodesic.mathdoc.fr/item/ZNSL_1997_249_a12/