Carleson measures and the heat equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 146-155
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G=\mathbb D\times\mathbb C$, where $\mathbb D$ is the open unit disk on the complex plane $\mathbb C$. In $G$ we consider the analytic solutions $u(t,z)$ $(t\in \mathbb D$, $z\in\mathbb C$) of the heat equation $2u_t=u_{zz}$ with initial data $f(z)=u(0,z)$ belonging to the Fock space $F$, i.e., to the space of entire functions square summable with the weight $e^{-|z|^2}$. Conditions on a nonnegative measure $\mu$ on $G$ are described under which for all $f\in F$ we have 
$$
\|u,L^2(G,\mu )\|\le C\|f,L^2(\mathbb C,e^{-|z|^2})\|.
$$
            
            
            
          
        
      @article{ZNSL_1997_247_a8,
     author = {V. L. Oleinik},
     title = {Carleson measures and the heat equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--155},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a8/}
}
                      
                      
                    V. L. Oleinik. Carleson measures and the heat equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 146-155. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a8/