Carleson measures and the heat equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 146-155
Voir la notice du chapitre de livre
Let $G=\mathbb D\times\mathbb C$, where $\mathbb D$ is the open unit disk on the complex plane $\mathbb C$. In $G$ we consider the analytic solutions $u(t,z)$ $(t\in \mathbb D$, $z\in\mathbb C$) of the heat equation $2u_t=u_{zz}$ with initial data $f(z)=u(0,z)$ belonging to the Fock space $F$, i.e., to the space of entire functions square summable with the weight $e^{-|z|^2}$. Conditions on a nonnegative measure $\mu$ on $G$ are described under which for all $f\in F$ we have $$ \|u,L^2(G,\mu )\|\le C\|f,L^2(\mathbb C,e^{-|z|^2})\|. $$
@article{ZNSL_1997_247_a8,
author = {V. L. Oleinik},
title = {Carleson measures and the heat equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--155},
year = {1997},
volume = {247},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a8/}
}
V. L. Oleinik. Carleson measures and the heat equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 146-155. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a8/