On a uniqueness theorem for functions with a sparse spectrum
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 7-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We present an example of a set $\Lambda\in\mathbb Z$ satisfying the following two conditions:
1) there exists a nonzero positive singular measure on the unit circle $\mathbb T$ with spectrum in $\Lambda$;
2) if the spectrum of $f\in L^1(\mathbb T)$ is contained in $\Lambda$ and $f$ vanishes on a set of positive measure, then $f=0$.
@article{ZNSL_1997_247_a0,
author = {A. B. Aleksandrov},
title = {On a uniqueness theorem for functions with a sparse spectrum},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--14},
publisher = {mathdoc},
volume = {247},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/}
}
A. B. Aleksandrov. On a uniqueness theorem for functions with a sparse spectrum. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 7-14. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/