On a uniqueness theorem for functions with a sparse spectrum
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 7-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an example of a set $\Lambda\in\mathbb Z$ satisfying the following two conditions: 1) there exists a nonzero positive singular measure on the unit circle $\mathbb T$ with spectrum in $\Lambda$; 2) if the spectrum of $f\in L^1(\mathbb T)$ is contained in $\Lambda$ and $f$ vanishes on a set of positive measure, then $f=0$.
@article{ZNSL_1997_247_a0,
     author = {A. B. Aleksandrov},
     title = {On a uniqueness theorem for functions with a sparse spectrum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--14},
     publisher = {mathdoc},
     volume = {247},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - On a uniqueness theorem for functions with a sparse spectrum
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 7
EP  - 14
VL  - 247
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/
LA  - ru
ID  - ZNSL_1997_247_a0
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T On a uniqueness theorem for functions with a sparse spectrum
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 7-14
%V 247
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/
%G ru
%F ZNSL_1997_247_a0
A. B. Aleksandrov. On a uniqueness theorem for functions with a sparse spectrum. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 25, Tome 247 (1997), pp. 7-14. http://geodesic.mathdoc.fr/item/ZNSL_1997_247_a0/