An estimate from above of spectral radii of random walks on surface groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 154-165

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Gabber's Lemma, we get new estimates of the spectral radius of the simple random walk on the fundamental group of the orientable closed surface of genus $g$, $g\ge2$. In order to get better numerical estimates we base our method on Cannon's classification of the group elements by their cone types. The method may as well be applied to many other groups and graphs with finite numbers of cone types.
@article{ZNSL_1997_240_a11,
     author = {T. V. Nagnibeda},
     title = {An estimate from above of spectral radii of random walks on surface groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {154--165},
     publisher = {mathdoc},
     volume = {240},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a11/}
}
TY  - JOUR
AU  - T. V. Nagnibeda
TI  - An estimate from above of spectral radii of random walks on surface groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 154
EP  - 165
VL  - 240
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a11/
LA  - ru
ID  - ZNSL_1997_240_a11
ER  - 
%0 Journal Article
%A T. V. Nagnibeda
%T An estimate from above of spectral radii of random walks on surface groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 154-165
%V 240
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a11/
%G ru
%F ZNSL_1997_240_a11
T. V. Nagnibeda. An estimate from above of spectral radii of random walks on surface groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial and algoritmic methods. Part II, Tome 240 (1997), pp. 154-165. http://geodesic.mathdoc.fr/item/ZNSL_1997_240_a11/