The effective models of the stratified media containing porous Biot layers
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 140-163

Voir la notice de l'article provenant de la source Math-Net.Ru

The periodic stratified media with alternating layers are investigated in three cases, when a period consists of: 1) two different porous Biot layers, 2) porous and elastic layers, 3) porous and fluid layers. In the case of alternating porous layers the effective model is proved to be generalized transversaly isotropic Biot medium. In this medium fluid density and averaged density are tensors. The effective model of stratified porous-fluid medium is a partial case of generalized transversaly isotropic Biot model and a generalization of effective model of layered fluid-solid medium.
@article{ZNSL_1997_239_a13,
     author = {L. A. Molotkov and A. V. Bakulin},
     title = {The effective models of the stratified media containing porous {Biot} layers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--163},
     publisher = {mathdoc},
     volume = {239},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/}
}
TY  - JOUR
AU  - L. A. Molotkov
AU  - A. V. Bakulin
TI  - The effective models of the stratified media containing porous Biot layers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1997
SP  - 140
EP  - 163
VL  - 239
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/
LA  - ru
ID  - ZNSL_1997_239_a13
ER  - 
%0 Journal Article
%A L. A. Molotkov
%A A. V. Bakulin
%T The effective models of the stratified media containing porous Biot layers
%J Zapiski Nauchnykh Seminarov POMI
%D 1997
%P 140-163
%V 239
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/
%G ru
%F ZNSL_1997_239_a13
L. A. Molotkov; A. V. Bakulin. The effective models of the stratified media containing porous Biot layers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 140-163. http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/