The effective models of the stratified media containing porous Biot layers
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 140-163
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The periodic stratified media with alternating layers are investigated in three cases, when a period consists of: 1) two different porous Biot layers, 2) porous and elastic layers, 3) porous and fluid layers. In the case of alternating porous layers the effective model is proved to be generalized transversaly isotropic Biot medium. In this medium fluid density and averaged density are tensors. The effective model of stratified porous-fluid medium is a partial case of generalized transversaly isotropic Biot model and a generalization of effective model of layered fluid-solid medium.
			
            
            
            
          
        
      @article{ZNSL_1997_239_a13,
     author = {L. A. Molotkov and A. V. Bakulin},
     title = {The effective models of the stratified media containing porous {Biot} layers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--163},
     publisher = {mathdoc},
     volume = {239},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/}
}
                      
                      
                    TY - JOUR AU - L. A. Molotkov AU - A. V. Bakulin TI - The effective models of the stratified media containing porous Biot layers JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 140 EP - 163 VL - 239 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/ LA - ru ID - ZNSL_1997_239_a13 ER -
L. A. Molotkov; A. V. Bakulin. The effective models of the stratified media containing porous Biot layers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 26, Tome 239 (1997), pp. 140-163. http://geodesic.mathdoc.fr/item/ZNSL_1997_239_a13/