Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 21-30
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $p\equiv3\!\pmod4$ be a prime, let $l(\sqrt p)$ be the length of the period of the expansion of $\sqrt p$ into a continued fraction, and let $h(4p)$ be the class number of the field $\mathbb Q(\sqrt p)$. Our main result is as follows. For $p>91$, $h(4p)=1$ if and only if $l(\sqrt p)>0.56\sqrt p\ L_{4p}(1)$, where $L_{4p}(1)$ is the corresponding Dirichlet series. The proof is based on studying linear relations between convergents of the expansion of $\sqrt p$ into a continued fraction.
@article{ZNSL_1997_237_a2,
author = {E. P. Golubeva},
title = {Estimates of the {Levy} constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--30},
publisher = {mathdoc},
volume = {237},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a2/}
}
TY - JOUR AU - E. P. Golubeva TI - Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1997 SP - 21 EP - 30 VL - 237 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a2/ LA - ru ID - ZNSL_1997_237_a2 ER -
E. P. Golubeva. Estimates of the Levy constant for $\sqrt p$ and class number one criterion for $\mathbb Q(\sqrt p)$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 14, Tome 237 (1997), pp. 21-30. http://geodesic.mathdoc.fr/item/ZNSL_1997_237_a2/