Vacuum curves and classical integrable systems in $2+1$ discrete dimensions
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 273-286

Voir la notice de l'article provenant de la source Math-Net.Ru

A dynamical system in discrete time is studied by means of algebraic geometry. This system has reductions which can be interpreted as classical field theory in the $2+1$ discrete space-time. The study is based on the technique of vacuum curves and vacuum vectors. The evolution of the system has hyperbolic character, i.e., has a finite propagation speed. Bibl. 10 titles.
@article{ZNSL_1996_235_a14,
     author = {I. G. Korepanov},
     title = {Vacuum curves and classical integrable systems in $2+1$ discrete dimensions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {273--286},
     publisher = {mathdoc},
     volume = {235},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a14/}
}
TY  - JOUR
AU  - I. G. Korepanov
TI  - Vacuum curves and classical integrable systems in $2+1$ discrete dimensions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1996
SP  - 273
EP  - 286
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a14/
LA  - en
ID  - ZNSL_1996_235_a14
ER  - 
%0 Journal Article
%A I. G. Korepanov
%T Vacuum curves and classical integrable systems in $2+1$ discrete dimensions
%J Zapiski Nauchnykh Seminarov POMI
%D 1996
%P 273-286
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a14/
%G en
%F ZNSL_1996_235_a14
I. G. Korepanov. Vacuum curves and classical integrable systems in $2+1$ discrete dimensions. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 15–2, Tome 235 (1996), pp. 273-286. http://geodesic.mathdoc.fr/item/ZNSL_1996_235_a14/