Gauss decomposition for quantum groups and supergroups
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 155-177

Voir la notice de l'article provenant de la source Math-Net.Ru

The Gauss decompositions of quantum groups related to classical Lie groups and supergroups are considered by the elementary algebraic and $R$-matrix methods. The commutation relations between the generators of the new basis introduced by the decomposition are described in detail. It is shown that it is possible to reduce a number of independent generators to the dimension of the related classical group. The symplectic quantum group $Sp_q(2)$ and supergroups $GL_q(1, 1)$ and $GL_q(2, 1)$ are considered as examples. Bibliography: 66 titles.
@article{ZNSL_1995_224_a12,
     author = {E. V. Damaskinsky and P. P. Kulish and M. A. Sokolov},
     title = {Gauss decomposition for quantum groups and supergroups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--177},
     publisher = {mathdoc},
     volume = {224},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a12/}
}
TY  - JOUR
AU  - E. V. Damaskinsky
AU  - P. P. Kulish
AU  - M. A. Sokolov
TI  - Gauss decomposition for quantum groups and supergroups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1995
SP  - 155
EP  - 177
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a12/
LA  - ru
ID  - ZNSL_1995_224_a12
ER  - 
%0 Journal Article
%A E. V. Damaskinsky
%A P. P. Kulish
%A M. A. Sokolov
%T Gauss decomposition for quantum groups and supergroups
%J Zapiski Nauchnykh Seminarov POMI
%D 1995
%P 155-177
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a12/
%G ru
%F ZNSL_1995_224_a12
E. V. Damaskinsky; P. P. Kulish; M. A. Sokolov. Gauss decomposition for quantum groups and supergroups. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 13, Tome 224 (1995), pp. 155-177. http://geodesic.mathdoc.fr/item/ZNSL_1995_224_a12/